Industrial and process controller KS 90-1and KS 92-1

(5in) BlueControl ${ }^{\circledR}$

More efficiency in engineering, more overview in operating:

The projecting environment for the BluePort ${ }^{\circledR}$ controllers

Description of symbols:

(i) General information

』. General warning
Attention: ESD sensitive devices
© PMA Prozeß- und Maschinen-Automation GmbH • Printed in Germany
All rights reserved. No part of this document may bereproduced or published in any form or by any means without prior written permission from the copyright owner.

A publication of PMA Prozeß- und Maschinen Automation
P.O.Box 310229

D-34058 Kassel
Germany

Contents

1 Mounting 5
2 Electrical connections 6
2.1 Connecting diagram 6
2.2 Terminal connection 7
3 Operation 11
3.1 Front view 11
3.2 Behaviour after power-on 12
3.3 Operating level 12
3.4 Error list / Maintenance manager 13
3.5 Self-tuning 16
3.5.1 Preparation for self-tuning 16
3.5.2 Optimization after start-up or at the set-point 17
3.5.3 Selecting the method (GanF/LnEr/EunE). 17
3.5.4 Step attempt after start-up 18
3.5.5 Pulse attempt after start-up 18
3.5.6 Optimization at the set-point 18
3.5.7 Optimization at the set-point for 3-point stepping controller. 20
3.5.8 Self-tuning start 21
3.5.9 Self-tuning cancellation 21
3.5.10 Acknowledgement procedures in case of unsuccessful self-tuning 22
3.5.11 Examples for self-tuning attempts 23
3.6 Manual self-tuning. 24
3.7 Second PID parameter set 25
3.8 Alarm handling 26
3.9 Operating structure 28
4 Configuration level 29
4.1 Configuration survey 29
4.2 Configuration parameters 30
4.3 Set-point processing 44
4.3.1 Set-point gradient / ramp 44
4.4 Switching behaviuor 45
4.4.1 Standard (5以 45
4.4.2 Switching attitude linear ($54[\mathrm{~L}=\mathrm{i}$) 45
4.4.3 Switching attitude non-linear ($\mathrm{CyRL}=$ こ) 46
4.4.4 Heating and cooling with constant period ($[4[\mathrm{~L}=\boldsymbol{3}$) 47
4.5 Configuration examples 48
4.5.1 On-Off controller / Signaller (inverse) 48
4.5.2 2-point controller (inverse) 49
4.5.3 3-point controller (relay \& relay) 50
4.5.4 $\quad 3$-point stepping controller (relay \& relay) 51
4.5.5 Continuous controller (inverse) 52
4.5.6 $\Delta \mathrm{Z}$ Y - Off controller / 2-point controller with pre-contact 53
4.5.7 Continuous controller with position controller 54
4.5.8 Measured value output 55
5 Parameter setting level. 56
5.1 Parameter survey 56
5.2 Parameters 57
5.3 Input scaling 60
5.3.1 Input 1 n P 1 and $:$ nP.3. $5 \square$
5.3.2 Input i nP.E 60
6 Calibration level 61
7 Special functions 64
$7.1 \mathrm{DAC}^{\circledR}$ - motor actuator monitoring 64
$7.2 \quad \mathrm{O}_{2}$ measurement 66
7.2.1 Connection 66
7.2.2 Configuration: 67
7.3 Linearization. 68
7.4 Loop alarm. 69
7.5 Heating current input / heating current alarm 69
7.6 KS9x-1 as Modbus master. 70
7.7 Back-up controller (PROFIBUS) 70
8 BlueControl 71
9 Versions 72
10 Technical data. 74
11 Safety hints 78
11.1 Resetting to factory setting, 80

1 Mounting

4 Fix the instrument only at top and bottom to avoid damaging it.

Safety switch:

For access to the safety switch, the controller must be withdrawn from the housing. Squeeze the top and bottom of the front bezel between thumb and forefinger and pull the controller firmly from the housing.

Loc	open	Access to the levels is as adjusted by means of BlueControl (engineering tool)
	(2)	

(1) Factory setting
(2) Default setting: display of all levels suppressed, password PD5 = IIFF

Caution! The unit contains ESD-sensitive components.

2 Electrical connections

2.1 Connecting diagram

(i) Dependent of order, the controller is fitted with :

- flat-pin terminals $1 \times 6,3 \mathrm{~mm}$ or $2 \times 2,8 \mathrm{~mm}$ to DIN 46244 or
- screw terminals for 0,5 to $2,5 \mathrm{~mm}^{2}$

On instruments with screw terminals, the insulation must be stripped by min. 12 mm . Choose end crimps accordingly!

2.2 Terminal connection

Power supply connection (1)
See chapter "Technical data"

Connection of outputs OUT1/2

(2)

Relay outputs ($250 \mathrm{~V} / 2 \mathrm{~A}$), potential-free changeover contact
Connection of outputs OUT3/4 (3)
a relay $(250 \mathrm{~V} / 2 \mathrm{~A})$, potential-free changeover contact
universal output
b current ($0 / 4 \ldots . .20 \mathrm{~mA}$)
c voltage ($0 / 2 . . .10 \mathrm{~V}$)
d transmitter supply
e $\operatorname{logic}(0 . .20 \mathrm{~mA} / 0 . .12 \mathrm{~V})$

Connection of input INP1 4

(2) OUT1/2 heating/cooling

Input mostly used for variable x1 (process value)
a thermocouple
b resistance thermometer (Pt100/ Pt1000/ KTY/ ...)
c current ($0 / 4 \ldots . .20 \mathrm{~mA}$)
d voltage ($0 / 2 . . .10 \mathrm{~V}$)

Connection of input INP2
 (5

f heating current input ($0 . .50 \mathrm{~mA} \mathrm{AC}$) or input for ext. set-point $(0 / 4 \ldots 20 \mathrm{~mA})$
g potentiometer input for position feedback

Connection of input INP2

a Heating current input ($0 . . .50 \mathrm{~mA} \mathrm{AC}$) or input for ext. Set-point ($0 / 4 . . .20 \mathrm{~mA}$)
b Potentiometer input for position feedback

Connection of input INP3

 6As input INP1, but without voltage
Connection of inputs di1, di2
Digital input, configurable as switch or push-button
(5) INP2 current tansformer

Connection of inputs di2/3 8 (option)

Digital inputs (24VDC external), galvanically isolated, configurable as switch or push-button

Connection of output \boldsymbol{U}_{T} (9) (option)

Supply voltage connection for external energization

Connection of outputs OUT5/6 (10) (option)

Digital outputs (opto-coupler), galvanic isolated, common positive control voltage, output rating: 18...32VDC

Connection of bus interface (11) (option)

PROFIBUS DP or RS422/485 interface with Modbus RTU protocol
89 di2/3, 2-wire transmitter supply

(i)

Analog outputs OUT3 or OUT4 and transmitter supply U_{T} are connected to different voltage potentials. Therefore, take care not to make an external galvanic connection between OUT3/4 and U_{T} with analog outputs!
(3) OUT3 transmitter supply

(9) RS485 interface (with RS232-RS485 interface converter)

* Interface description Modbus RTU in speperate manual: see page 72.
(3) OUT3 as logic output with solid-state relay (series and parallel connection)

KS9x-1 connecting example:

CAUTION: Using a temperature limiter is recommendable in systems where overtemperature implies a fire hazard or other risks.

3 Operation

3.1 Front view

LED colours: LED 1, 2, 3, 4: yellow, Bargraph: red, other LEDs: red
In the upper display line, the process value is always displayed. At parameter, configuration, calibration as well as extended operating level, the bottom display line changes cyclically between parameter name and parameter value.

3.2 Behaviour after power-on

After supply voltage switch-on, the unit starts with the operating level.
The unit is in the condition which was active before power-off.
If the controller was in manual mode at supply voltage switch-off, the controller will re-start with the last output value in manual mode at power-on.

3.3 Operating level

The content of the extended operating level is determined by means of BlueControl (engineering tool). Parameters which are used frequently or the display of which is important can be copied to the extended operating level.

Error list (if error exists)

3.4 Error list / Maintenance manager

With one or several errors, the extended operating level always starts with the error list. Signalling an actual entry in the error list (alarm, error) is done by the Err LED in the display. To reach the error list press \square twice.

Err LED status	Signification	Proceed as follows
$\begin{gathered} \text { blinks } \\ \left(\text { status } E^{\prime}\right) \end{gathered}$	Alarm due to existing error	- Determine the error type in the error list - After error correction the unit changes to status
$\begin{aligned} & \text { lit } \\ & \text { (status } \end{aligned}$	Error removed, alarm not acknowledged	- Acknowledge the alarm in the error list pressing key \triangle or - The alarm entry was deleted (status ${ }^{[1}$).
$\begin{gathered} \text { off } \\ \text { (status } I) \end{gathered}$	No error, all alarm entries deleted	--Not visible except when acknowledging

Error list:

Name	Description	Cause	Possible remedial action
E. 1	Internal error, cannot be removed	- E.g. defective EEPROM	- Contact PMA service - Return unit to our factory
$E .3$	Internal error, can be reset	- e.g. EMC trouble	- Keep measurement and power supply cables in separate runs - Ensure that interference suppression of contactors is provided
$E .3$	Configuration error, can be reset	- wrong configuration missing configuration	- Check interaction of configuration / parameters
$E .4$	Hardware error	- Codenumber and hardware are not identical	- Contact PMA service - Elektronic-/Optioncard must be exchanged
$\begin{aligned} & 56 F \\ & 1 / 2 / 3 \end{aligned}$	Sensor break INP1/2/3	- Sensor defective - Faulty cabling	- Replace INP1/2/3 sensor - Check INP1/2/3 connection
$\begin{aligned} & 5 h t \\ & 1 / 2 / 3 \end{aligned}$	Short circuit INP1/2/3	- Sensor defective - Faulty cabling	- Replace INP1/2/3 sensor - Check INP1/2/3 connection
$\begin{aligned} & 9 D L \\ & 1 / 2 / 3 \end{aligned}$	INP1/2/3 polarity error	- Faulty cabling	- Reverse INP1/2/3 polarity
HER	Heating current alarm (HCA)	- Heating current circuit interrupted, $\mathrm{I}<\mathrm{HE} . \mathrm{F}$ or I $>$ HLSA (dependent of configuration) - Heater band defective	- Check heating current circuit - If necessary, replace heater band

Name	Description	Cause	Possible remedial action
55.	Heating current short circuit (SSR)	- Current flow in heating circuit with controller off - SSR defective	- Check heating current circuit - If necessary, replace solid-state relay
Loop	Control loop alarm (LOOP)	- Input signal defective or not connected correctly - Output not connected correctly	- Check heating or cooling circuit - Check sensor and replace it, if necessary - Check controller and switching device
RdR.M	Self-tuning heating alarm (ADAH)	- See Self-tuning heating error status	- see Self-tuning heating error status
Radic	Self-tuning heating alarm cooling (ADAC)	- See Self-tuning cooling error status	- see Self-tuning cooling error status
dif	DAC-Alarm	Actor error	see errorstatus DAC-function
Lin	$\begin{aligned} & \text { stored limit } \\ & \text { alarm 1/2/3 } \end{aligned}$	- adjusted limit value $1 / 2 / 3$ exceeded	- check process
1 nF .1	time limit value message	- adjusted number of operating hours reached	- application-specific
$1 \mathrm{nF} \mathrm{l}^{3}$	duty cycle message (digital ouputs)	- adjusted number of duty cycles reached	- application-specific
E. 5	Internal error in DP module	self-test errorinternal communication interrupted	Switch on the instrument againContact PMA service
dP. 4	No access by bus master	bus errorconnector problemno bus connection	Check cableCheck connectorCheck connections
dp. 2	Faulty configuration	Faulty DP configuration telegram	Check DP configuration telegram in master
dP. 3	Inadmissible parameter setting telegram sent	Faulty DP parameter setting telegram	Check DP parameter setting telegram in master
dP. 4	No data communication	Bus errorAddress errorMaster stopped	Check cable connectionCheck addressCheck master setting

Saved alarms (Err-LED is lit) can be acknowledged and deleted with the digital input di1/2/3, the \mathbb{F}-key or the
Configuration, see page 37: [anF/LAEI/Err.r
If an alarm is still valid that means the cause of the alarm is not removed so far (Err-LED blinks), then other saved alarms can not be acknowledged and deleted.

Self-tuning heating ($R d R . H$) and cooling ($R d R \cdot E$) error status:

Error	Description	Behaviour
0	No error	
3	Faulty control action	Re-configure controller (inverse \leftrightarrow direct)
4	No response of process variable	The control loop is perhaps not closed: check sensor, connections and process
5	Low reversal point	Increase (P dR.H) max. output limiting Y.4 , or decrease (RdR.L) min. output limiting ULI a
5	Danger of exceeded set-point (parameter determined)	If necessary, increase (inverse) or reduce (direct) set-point
7	Output step change too small (dy > 5\%)	Increase (RdR.H) max. output limiting S.H. or reduce (Rda.L) min. output limiting Y.L a
8	Set-point reserve too small	Acknowledgment of this error message leads to switch-over to automatic mode.If self-tuning shall be continued, increase set-point (invers), reduce set-point (direct) or decrease set-point range $(\rightarrow P R G R / 5 E L P / 5 P L D$ and 5PH. $)$

DAC function ($\mathrm{d} R \mathrm{~F} \mathrm{C}$) error status:

Error status	Description	Behaviour
\square	No error	
3	Output is blocked	Check the drive for blockage
4	Wrong method of operation	Wrong phasing, defect motor capacitor
5	Fail at Yp measurement	Check the connection to the Yp input
5	Calibration error	Manual calibration necessary

3.5 Self-tuning

For determination of optimum process parameters, self-tuning is possible.
After starting by the operator, the controller makes an adaptation attempt, whereby the process characteristics are used to calculate the parameters for fast line-out to the set-point without overshoot.

The following parameters are optimized when self-tuning: Parameter set 1:

$\mathrm{Pb} \quad$ - Proportional band 1 (heating) in engineering units [e.g. $\left.{ }^{\circ} \mathrm{C}\right]$ E: - Integral time 1 (heating) in [s] \rightarrow only, unless set to ir F
Ld: - Derivative time 1 (heating) in [s] \rightarrow only, unless set to AFF
: - Minimum cycle time ", (heating) in [s] \rightarrow only, unless Adt0 was set to "no self-tuning" during configuration by means of BlueControl ${ }^{\text {B }}$.
$\mathrm{PbZ} \quad$ - Proportional band 2 (cooling) in engineering units [e.g. ${ }^{\circ} \mathrm{C}$]
$E, ~-~ I n t e g r a l ~ t i m e ~ 2(c o o l i n g) ~ i n ~[s] \rightarrow$ only, unless set to ifF
$E d Z^{2} \quad$ - Derivative time 2 (cooling) in $[\mathrm{s}] \rightarrow$ only, unless set to GFF
$E 2 \quad$ Minimum cycle time 2 (cooling) in $[\mathrm{s}] \rightarrow$ only, unless Adt0 was set to "no self-tuning" during configuration by means of BlueControl ${ }^{\mathbb{B}}$.

Parameter set 2: analogous to parameter set 1 (see page 25)

3.5.1 Preparation for self-tuning

- Adjust the controller measuring range as control range limits. Set values in in. and riblit to the limits of subsequent control.
(Configuration \rightarrow Controller \rightarrow lower and upper control range limits)
ConF \rightarrow EnEr \rightarrow rabil andrabit
- Determine which parameter set shall be optimized.
-The instantaneously effective parameter set is optimized.
\rightarrow Activate the relevant parameter set (1 or 2).
- Determine which parameter set shall be optimized (see tables above).
- Select the self-tuning method see chapter 3.5.3
-Step attempt after start-up
-Pulse attempt after start-up
-Optimization at the set-point

3.5.2 Optimization after start-up or at the set-point

The two methods are optimization after start-up and at the set-point.
As control parameters are always optimal only for a limited process range, various methods can be selected dependent of requirements. If the process behaviour is very different after start-up and directly at the set-point, parameter sets 1 and 2 can be optimized using different methods. Switch-over between parameter sets dependent of process status is possible (see page).

Optimization after start-up: (see page 4)
Optimization after start-up requires a certain separation between process value and set-point. This separation enables the controller to determine the control parameters by evaluation of the process when lining out to the set-point.
This method optimizes the control loop from the start conditions to the set-point, whereby a wide control range is covered.
We recommend selecting optimization method "Step attempt after start-up" with $\mathrm{LanE}=0$ first. Unless this attempt is completed successfully, we recommend a "Pulse attempt after start-up".

Optimization at the set-point: (see page 18)
For optimizing at the set-point, the controller outputs a disturbance variable to the process. This is done by changing the output variable shortly. The process value changed by this pulse is evaluated. The detected process parameters are converted into control parameters and saved in the controller.
This procedure optimizes the control loop directly at the set-point. The advantage is in the small control deviation during optimization.

3.5.3 Selecting the method (EanF/LnEr/EunE)
 Selection criteria for the optimization method:

	Step attempt after start-up	Pulse attempt after start-up	Optimization at the set-point
LunE = 0	sufficient set-point reserve is provided		sufficient set-point reserve is not provided
Lunt $=1$		sufficient set-point reserve is provided	sufficient set-point reserve is not provided
EunE = 2	always step attempt after start-up		

Sufficient set-point reserve:

 direct controller: (with process value $>$ set-point $+(10 \%$ ofrabitrontion

3.5.4 Step attempt after start-up

Condition: $\quad-\tan E=0$ and sufficient set-point reserve provided or $\quad-t \operatorname{tunE}=2$
The controller outputs 0% correcting variable or IL L a and waits, until the process is at rest (see start-conditions on page 8).
Subsequently, a correcting variable step change to 100% is output.
The controller attempts to calculate the optimum control parameters from the process response. If this is done successfully, the optimized parameters are taken over and used for line-out to the set-point.
With a 3-point controller, this is followed by "cooling".
After completing the 1st step as described, a correcting variable of -100% (100% cooling energy) is output from the set-point. After successfull determination of the "cooling parameters", line-out to the set-point is using the optimized parameters.

3.5.5 Pulse attempt after start-up

Condition: - LunE = 1 and sufficient set-point reserve provided.
The controller outputs 0% correcting variable or HIL a and waits, until the process is at rest (see start conditions page 8)
Subsequently, a short pulse of 100% is output ($\mathrm{Y}=100 \%$) and reset.
The controller attempts to determine the optimum control parameters from the process response. If this is completed successfully, these optimized parameters are taken over and used for line-out to the set-point.

With a 3-point controller, this is followed by "cooling".
After completing the 1st step as described and line-out to the set-point, correcting variable "heating" remains unchanged and a cooling pulse (100% cooling energy) is output additionally. After successful determination of the "cooling parameters", the optimized parameters are used for line-out to the set-point.

3.5.6 Optimization at the set-point

Conditions:

- A sufficient set-point reserve is not provided at self-tuning start (see page 17).
- EunE is 0 or 1
- With $5 \mathrm{Er} \mathrm{E}=\mathrm{I}$ configured and detection of a process value oscillation by more than $\pm 0,5 \%$ of (raith -rnmil) by the controller, the control parameters are preset for process stabilization and the controller realizes an optimization at the set-point (see figure "Optimization at the set-point").
- when the step attempt after power-on has failed
- with active gradient function ($P R-R / 5 E L P / r .5 P=$ DFF $)$, the set-point gradient is started from the process value and there isn't a sufficient set-point reserve.

Optimization-at-the-set-point procedure:

The controller uses its instantaneous parameters for control to the set-point. In lined out condition, the controller makes a pulse attempt. This pulse reduces the correcting variable by max. 20% (1) to generate a slight process value undershoot. The changing process is analyzed and the parameters thus calculated are recorded in the controller. The optimized parameters are used for line-out to theset-point.

Optimization at the set-point

With a 3-point controller, optimization for the "heating" or "cooling" parameters occurs dependent of the instantaneous condition.
These two optimizations must be started separately.
(1) If the correcting variable is too low for reduction in lined out condition it is increased by max. 20%.

3.5.7 Optimization at the set-point for 3-point stepping controller

With 3-point stepping controllers, the pulse attempt can be made with or without position feedback. Unless feedback is provided, the controller calculates the motor actuator position internally by varying an integrator with the adjusted actuator travel time. For this reason, precise entry of the actuator travel time ($L: t$), as time between stops is highly important. Due to position simulation, the controller knows whether an increased or reduced pulse must be output. After supply voltage switch-on, position simulation is at 50%. When the motor actuator was varied by the adjusted travel time in one go, internal calculation occurs, i.e. the position corresponds to the simulation:

Internal calculation
tt
Internal calculation always occurs, when the actuator was varied by travel time $t t$ in one go, independent of manual or automatic mode. When interrupting the variation, internal calculation is cancelled. Unless internal calculation occurred already after self-tuning start, it will occur automatically by closing the actuator once.

Unless the positioning limits were reached within 10 hours, a significant deviation between simulation and actual position may have occurred. In this case, the controller would realize minor internal calculation, i.e. the actuator would be closed by 20%, and re-opened by 20% subsequently. As a result, the controller knows that there is a 20% reserve for the attempt.

3.5.8 Self-tuning start

Start condition:

- For process evaluation, a stable condition is required. Therefore, the controller waits until the process has reached a stable condition after self-tuning start.
The rest condition is considered being reached, when the process value

- For self-tuning start after start-up, a 10% difference from (5\% . . . 5\%.H1) is required.
(i)

Self-tuning start can be blocked via BlueControl ${ }^{\circledR}$ (engineering tool) (PLA:L).
$5 \mathrm{ER}=\square \quad$ Only manual start by pressing keys \square and Δ simultaneously or via interface is possible.

Strt $=1 \quad$ Manual start by press keys \square and Δ simultaneously via interface and automatic start after power-on and detection of process oscillations.

Ada LED status	Signification
blinks	Waiting, until process calms down
lit	Self-tuning is running
off	Self-tuning not activ or ended

3.5.9 Self-tuning cancellation

By the operator:

Self-tuning can always be cancelled by the operator. For this, press \square and Δ key simultaneously.With controller switch-over to manual mode after self-tuning start, self-tuning is cancelled. When self-tuning is cancelled, the controller will continue operating using the old parameter values.

By the controller:

If the Err LED starts blinking whilst self-tuning is running, successful self-tuning is prevented due to the control conditions. In this case, self-tuning was cancelled by the controller. The controller continues operating with the old parameters in automatic mode. In manual mode it continues with the old controller output value.

3.5.10 Acknowledgement procedures in case of unsuccessful self-tuning

1. Press keys \square and \triangle simultaneously:

The controller continues controlling using the old parameters in automatic mode. The Err LED continues blinking, until the self-tuning error was acknowledged in the error list.
2. Press key 圈 (if configured):

The controller goes to manual mode. The Err LED continues blinking, until the self-tuning error was acknowleged in the error list.
3. Press key \square :

Display of error list at extended operating level. After acknowledgement of the error message, the controller continues control in automatic mode using the old parameters.

Cancellation causes:

\rightarrow page 15: "Error status self-tuning heating (RdRH) and cooling (RdRE)"

3.5.11 Examples for self-tuning attempts (controller inverse, heating or heating/cooling)

Start: heating power switched on Heating power Y is switched off (1). When the change of process value X was constant during one minute (2), the power is switched on (3).
At the reversal point, the self-tuning attempt is finished and the new parameter are used for controlling to set-point W .

Start: heating power switched off
The controller waits 1,5 minutes (1). Heating power Y is switched on (2). At the reversal point, the self-tuning attempt is finished and control to the set-point is using the new parameters.

Self-tuning at the set-point

 1The process is controlled to the set-point. With the control deviation constant during a defined time (1) (i.e. constant separation of process value and set-point), the controller outputs a reduced correcting variable pulse (max. 20% (2). After determination of the control parameters using the process characteristic (3), control is started using the new parameters (4).

Three-point controller

The parameter for heating and cooling are determined in two attempts. The heating power is switched on (1). Heating para-
 termined at the reversal point. Control to the set-point occurs(2). With constant control deviation, the controller provides a cooling correcting variable pulse (3). After determining its cooling parameters
 process characteristics, control operation is started using the new parameters (5). During phase (3, heating and cooling are done simultaneously!

Operation

3.6 Manual self-tuning

The optimization aid can be used with units on which the control parameters shall be set without self-tuning.
For this, the response of process variable x after a step change of correcting variable y can be used. Frequently, plotting the complete response curve (0 to 100%) is not possible, because the process must be kept within defined limits. Values T_{g} and $\mathrm{x}_{\text {max }}$ (step change from 0 to 100%) or $\Delta \mathrm{t}$ and $\Delta \mathrm{x}$ (partial step response) can be used to determine the maximum rate of increase $\mathrm{v}_{\text {max }}$.

The control parameters can be determined from the values calculated for delay time T_{u}, maximum rate of increase $v_{\text {max }}$, control range X_{h} and characteristic K according to the formulas given below. Increase Xp , if line-out to the set-point oscillates.

Parameter adiustment effects

Parameter	Control	Line-out of disturbances	Start-up behaviour
Pb $\begin{array}{r}\text { ingher } \\ \text { lower }\end{array}$	increased damping	slower line-out	slower reduction of duty cycle
	reduced damping	faster line-out	faster reduction of duty cycle
Ed ! higher lower	reduced damping	faster response to disturbances	faster reduction of duty cycle
	increased damping	slower response to disturbances	slower reduction of duty
$\begin{array}{\|ccc} \hline \text { : } & \text { higher } \\ \text { lower } \end{array}$	increased damping	slower line-out	slower reduction of duty cycle
	reduced damping	faster line-out	faster reduction of duty cyc

$\mathrm{K}=\operatorname{Vmax}{ }^{*}$

With 2-point and 3-point controllers, the cycle time must be adjusted to
と $1 /$ Eこ $\leq 0,25^{*} \mathrm{Tu}$

Formulas

controller behavior	Pb 4 [phy. units]	td ${ }^{\text {[}}$ [$]$	L. ${ }^{\text {[}}$ [$]$
PID	1,7* K	2* Tu	2*Tu
PD	0,5*K	Tu	BFF
PI	2,6* K	DFF	6*Tu
P	K	DFF	DFF
3-point-stepping	1.7*K	Tu	2*Tu

3.7 Second PID parameter set

The process characteristic is frequently affected by various factors such as process value, correcting variable and material differences.
To comply with these requirements, KS 9x-1 can be switched over between two parameter sets.
Parameter sets $P R-R$ and $P R$ are provided for heating and cooling.

 key E or interface (OPTION).

Self-tuning is always done using the active parameter set, i.e. the second parameter set must be active for optimizing.

3.8 Alarm handling

Max. three alarms can be configured and assigned to the individual outputs. Generally, outputs iut. i... Dut.E can be used each for alarm signalling. If more than one signal is linked to one output the signals are OR linked. Each of the 3 limit values L iñ. ...L ini.l has 2 trigger points H.x (Max) and L.x (Min), which can be switched off individually (parameter $=$ "DFF"). Switching difference H55x and delay dEL.x of each limit value is adjustable.
(1) Operaing principle absolut alarm
$\mathrm{L} .1=\mathrm{BF} \mathrm{F}$

H. $\mathrm{H}=\mathrm{BF} \mathrm{F}$
$\mathrm{H} . \mathrm{I}=\mathrm{DFF}$

(2) normally open ($\operatorname{CanF} / \operatorname{Lat} x / \operatorname{Rac}=\square)$ (inverted output relay action)

The variable to be monitored can be selected seperately for each alarm via configuration
The following variables can be monitored:

- process value
- control deviation xw (process value - set-point)
- control deviation xw + suppression after start-up or set-point change After switching on or set-point changing, the alarm output is suppressed, until the process value is within the limits for the first time. At the latest after expiration of time $10 \Sigma_{1}($, the alarm is activated. ($\mathbf{t}, \mathrm{l}=$ integral time 1 ; parameter \rightarrow [ntr)
If E_{1} is iswitched off $\left(\boldsymbol{L}_{1}:=[F F)\right.$, this is interpreted as ∞, i.e. the alarm is not activated, before the process value was within the limits once.
- Measured value INP1
- Measured value INP2
- Measured value INP3
- effective set-point Weff
- correcting variable y (controller output)
- Deviation from SP internal
- x1-x2
- control deviation $\mathrm{xw}+$ suppression after start-up or setpoint change without time limit.
- after switch-on or setpoint change, alarm output is suppressed, until the process value was within the limits once.
(i)

If measured value monitoring + alarm status storage is chosen ($\mathrm{CanF} / \mathrm{L}$ in / $\left.F_{n c} x=己 / 4\right)$, the alarm relay remains switched on until the alarm is resetted in the error list ($\left.\begin{array}{l}\mathrm{L} \\ \text { in } \\ \mathbf{i} \\ . .3=1\end{array}\right)$.

3.9 Operating structure

After supply voltage switch-on, the controller starts with the operating levels.
The controller status is as before power off.

PRIR-level: At PR-R-level, the right decimal point of the bottom display line is lit continuously.
[anF-level: At [anF-level, the right decimal point of bottom display line blinks.
When safety switch Loc is open, only the levels enabled by means of BlueControl (engineering tool) are visible and accessible by entry of the password also adjusted by means of BlueControl (engineering tool). Individual parameters accessible without password must be copied to the extended operating level.
(i) All password-protected levels are disabled only, if the Loc safety switch is closed.
(i)

Factory setting:Safety switch Loc closed: all levels accessible without restriction, password $9855=$ RFF

Safety switch Loc	Password entered with BluePort ${ }^{\circledR}$	Function disabled or enabled with BluePort $®$	Access via the instrument front panel:
closed	OFF / password	disabled / enabled	enabled
open	OFF / password	disabled	disabled
open	OFF	enabled	enabled
open	Password	enabled	enabled after password entry

4 Configuration level

4.1 Configuration survey

Adjustment:

- The configuration can be adjusted by means of keys $\Delta \mathbb{\nabla}$
- Transition to the next configuration is by pressing key $-$
- After the last configuration of a group, danE is displayed and followed by automatic change to the next group
Return to the beginning of a group is by pressing the \square key for $\mathbf{3} \mathbf{s e c}$.

Configuration level

4.2 Configuration parameters

Entr

$\begin{aligned} & \text { Name } \\ & 519.5 n \end{aligned}$	Value range	Description	Default
		Basic configuration of setpoint processing	0
	0	set-point controller can be switched over to external set-point (\rightarrow L DLI / SPE)	
	8	standard controller with external offset (5.E)	
[LE \square°		Calculation of the process value	0
	0	standard controller (process value $=\mathrm{xl}$)	
	1	ratio controller (x1/x2)	
	2	difference (x1-x2)	
	3	Maximum value of x 1 and $\times 2$. It is controlled with the bigger value. At sensor failure it is controlled with the remaining actual value.	
	4	Minimum value of x 1 and x 2 . It is controlled with the smaller value. At sensor failure it is controlled with the remaining actual value.	
	5	Mean value (x1, x2). With sensor error, controlling is continued with the remaining process value.	
	6		
	7	0 function with constant sensor temperature	
	8	0 function with measured sensor temperature	
L.fne		Control behaviour (algorithm)	1
	0	on/off controller or signaller with one output	
	1	PID controller (2-point and continuous)	
	2	$\Delta / \mathrm{Y} / \mathrm{Off}$, or 2-point controller with partial/full load switch-over	
	3	2 x PID (3-point and continuous)	
	4	3-point stepping controller	
	5	3-point stepping controller with position feedback Yp	
	6	continuous controller with integrated positioner	
L.dif		Output action of the PID controller derivative action	0
	0	Derivative action acts only on the measured value.	
	1	Derivative action only acts on the control deviation (set-point is also differentiated)	
呺品		Manual operation permitted	0
	0	no	
	1		
L.HEL		Method of controller operation	0
	0	inverse, e.g. heating The correcting variable increases with decreasing process value and decreases with increasing process value.	
	1	direct, e.g. cooling The correcting variable increases with increasing process value and decreases with decreasing process value.	

Configuration level

Name FA1 L	Value range	Description	Default
		Behaviour at sensor break	1
	0	controller outputs switched off	
	1	$\mathrm{y}=\mathrm{Y} 2$	
	2	$\mathrm{y}=$ mean output. The maximum permissible output can be adjusted with parameter 3 n.h. To prevent determination of inadmissible values, mean value formation is only if the control deviation is lower than parameter L. 4 n .	
OnLit	-1999... 9999	$\mathbf{X} 0$ (start of control range) 1	-100
-nLiH	-1999... 9999	X100 (end of control range) (1)	1200
[3L		Characteristic for 2-point- and 3-point-controllers	0
	0	standard	
	1	water cooling linear (siehe Seite 45)	
	2	water cooling non-linear	
	3	with constant cycle	
tunt		Auto-tuning at start-up	0
	0	At start-up with step attempt, at set-point with impulse attempt	
	1	At start-up and at set-point with impulse attempt. Setting for fast controlled systems (e.g. hot runner control)	
	2	Always step attempt at start-up	
Stre		Start of auto-tuning	0
	0	Manual start of auto-tuning	
	1	Manual or automatic start of auto-tuning at power on or when oscillating is detected	
Adt0		Optimization of T1, T2 (only visible with BlueControl!)	0
	0	Automatic optimization	
	1	No optimization	

(1) int.L and intith are indicating the range of control on which e.g. the self-tuning is refering

inP. 1

Name 1.5nc	Value range	Description	Default
		INP1 function selection	7
	0	No function (following INP data are skipped)	
	1	Heating current input	
	2	External set-point SP.E (switch-over->L	
	3	Position feedback Yp	
	4	Second process value x 2 (ratio, min, max, mean)	
	5	External positioning value Y.E (switch-over \rightarrow LTEI / U.E)	
	6	No controller input (e.g. limit signalling instead)	
	7	Process value x1	
5.29		Sensor type selection	1
	0	thermocouple type L (-100...900 ${ }^{\circ} \mathrm{C}$) , Fe-CuNi DIN	
	1	thermocouple type $\mathrm{J}\left(-100 . . .1200^{\circ} \mathrm{C}\right), \mathrm{Fe}-\mathrm{CuNi}$	
	2	thermocouple type K (-100 ..1350 ${ }^{\circ} \mathrm{C}$), NiCr-Ni	
	3	thermocouple type $\mathrm{N}\left(-100 \ldots 1300^{\circ} \mathrm{C}\right)$, Nicrosil-Nisil	

Configuration level

Name	Value range	Description	Default
	4	thermocouple type S ($0 . . .1760^{\circ} \mathrm{C}$), PtRh-Pt10\%	
	5	thermocouple type R ($\left.0 \ldots . .1760^{\circ} \mathrm{C}\right)$, PtRh-Pt13\%	
	6	thermocouple type T ($-200 \ldots . .400^{\circ} \mathrm{C}$), Cu-CuNi	
	7	thermocouple type C ($0 . . .2315^{\circ} \mathrm{C}$), W5\%Re-W26\%Re	
	8	thermocouple type D ($0 . .2315^{\circ} \mathrm{C}$), W3\%Re-W25\%Re	
	9	thermocouple type E (-100 ...1000 ${ }^{\circ} \mathrm{C}$), NiCr - CuNi	
	10	thermocouple type B ($0 / 100 \ldots 1820^{\circ} \mathrm{C}$), PtRh-Pt6\%	
	18	special thermocouple	
	20	Pt100 (-200.0 $\ldots 100,0^{\circ} \mathrm{C}$) ($-200,0 \ldots 150,0^{\circ} \mathrm{C}$ with reduced lead resistance: measuring resistance + lead resistance $\leq 160 \Omega$)	
	21	Pt100 (-200.0 ...850,0 $\left.{ }^{\circ} \mathrm{C}\right)$	
	22	Pt1000 (-200.0 $\ldots .850 .0{ }^{\circ} \mathrm{C}$)	
	23	special 0... 4500 Ohm (preset to KTY11-6)	
	24	special 0... 450 Ohm	
	30	$0 \ldots . .20 \mathrm{~mA} / 4 \ldots . .20 \mathrm{~mA}$ (1)	
	40	$0 \ldots . .10 \mathrm{~V} / 2 . .10 \mathrm{~V}$ (1)	
	41	special -2,5...115 mV (1)	
	42	special -25...1150 mV (1)	
	50	potentiometer $0 \ldots . .1600 \mathrm{hm}$ (1)	
	51	potentiometer 0... 4500 hm (1)	
	52	potentiometer 0...1600 0 hm (1)	
	53	potentiometer 0... 45000 hm (1)	
5.L 10		Linearization (only at 5 t $\unlhd P=23(\mathrm{KTY} 11-0), 24(0 . .450 \Omega), 30$ $(0.20 \mathrm{~mA}), 40(0.10 \mathrm{~V}), 41(0 . . .100 \mathrm{mV})$ and $42($ special $-25 . . .1150 \mathrm{mV})$)	0
	0	none	
	1	Linearization to specification. Creation of linearization table with BlueControl (engineering tool) possible. The characteristic for KTY 11-6 temperature sensors is preset.	
Larr		Measured value correction / scaling	0
	0	Without scaling	
	1	Offset correction (at [: HL_{L} level) (controller offset adjustment is at [AL level)	
	2	2-point correction (at [RL level) (calibration is at the controller [ML level)	
	3	Scaling (at PR,FA level)	
	4	Autom. calibration (only with positionfeedback Yp)	
1 nc	$-1999 \ldots . . .999$	Alternative value for error at INP1 If a value is adjusted, this value is used for display and calculation in case of error (e.g. FAIL). 〔 Before activating a substitute value, the effect in the control loop should be considered!	BFF
fAI1		Forcing INP1 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

(1) with current and voltage input signals, scaling is required (see chapter 5.3)

10 PB

Name 1.fnc	Value range	Description	Default
		Function selection of INP2	1
	0	no function (subsequent input data are skipped)	
	1	heating current input	
	2	external set-point (5P.E)	
	3	Yp input	
	4	Second process value X2	
	5	External positioning value Y.E (switch-over \rightarrow LILIL / S.E)	
5.54	6	no controller input (e.g. transmitter input instead)	
	7	Process value x1	
		Sensor type selection	30
	30	0...20mA / $4 \ldots 20 \mathrm{~mA}$ (
	31	$0 . . .50 \mathrm{~mA} \mathrm{AC} 1$	
Larr	50	Potentiometer (0...160 Ohm) ©	
	51	Potentiometer ($0 . . .450 \mathrm{Ohm}$) 1	
	52	Potentiometer ($0 . . .1600$ Ohm) (1)	
	53	Potentiometer ($0 \ldots . .4500$ Ohm) (1)	
		Measured value correction / scaling	0
	0	Without scaling	
	1	Offset correction (at [: HL level) (offset entry is at controller [PIL level)	
	2	2-point correction (at [:CL level) (calibration is at controller [RL level)	
	3		
1 n.t.	$-1999 . . .999$	Alternative value for error at INP2 If a value is adjusted, this value is used for display and calculation in case of error (e.g. FAIL). \. Before activating a substitute value, the effect in the control loop should be considered!	DFF
fAI2		Forcing INP2 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

(1) with current and voltage input signals, scaling is required (see chapter 5.3)

1nP. 3

Name i.f ni	Value range	Description	Default
		Function selection of INP3	1
	0	no function (subsequent input data are skipped)	
	1	heating current input	
	2	External set-point SPP (switch-over ->L TLI / SPE	
	3	Yp input	
	4	Second process value X2	
	5	External positioning value Y.E (switch-over \rightarrow LIELI/ ITE)	
	6	no controller input (e.g. transmitter input instead)	
	7	Process value x 1	

Configuration level

Name	Value range	Description	Default
5.1 ln		Linearization (only at 515 SP $=30(0.20 \mathrm{~mA})$ and $40(0.10 \mathrm{~V})$ adjustable)	0
	0	none	
	1	Linearization to specification. Creation of linearization table with BlueControl (engineering tool) possible. The characteristic for KTY 11-6 temperature sensors is preset.	
5.29		Sensor type selection	30
	0	thermocouple type L (-100 .. $\left.900^{\circ} \mathrm{C}\right)$, Fe-CuNi DIN	
	1	thermocouple type J ($-100 \ldots 1200^{\circ} \mathrm{C}$) , $\mathrm{Fe}-\mathrm{CuNi}$	
	2	thermocouple type K (-100 ..1350 $\left.{ }^{\circ} \mathrm{C}\right)$, NiCr-Ni	
	3	thermocouple type $\mathrm{N}\left(-100 \ldots 1300^{\circ} \mathrm{C}\right)$, Nicrosil-Nisil	
	4	thermocouple type $\mathrm{S}\left(0 \ldots 1760^{\circ} \mathrm{C}\right), \mathrm{PtRh}-\mathrm{Pt} 10 \%$	
	5	thermocouple type R ($0 . .11760^{\circ} \mathrm{C}$), PtRh-Pt13\%	
	6	thermocouple type T ($-200 \ldots . .400^{\circ} \mathrm{C}$), , $\mathrm{Cu}-\mathrm{CuNi}$	
	7	thermocouple type C ($0 . . .2315^{\circ} \mathrm{C}$) , W5\%Re-W26\%Re	
	8	thermocouple type D ($0 . .2315^{\circ} \mathrm{C}$), W3\%Re-W25\%Re	
	9	thermocouple type E (-100 ..1000 ${ }^{\circ} \mathrm{C}$), NiCr-CuNi	
	10	thermocouple type B ($0 / 100 \ldots 1820^{\circ} \mathrm{C}$), PtRh-Pt6\%	
	18	special thermocouple	
	20	Pt100 ($-200.0 \ldots 100,0^{\circ} \mathrm{C}$) $\left(-200,0 \ldots 150,0^{\circ} \mathrm{C}\right.$ with reduced lead resistance: measuring resistance + lead resistance $\leq 160 \Omega$)	
	21	Pt100 (-200.0 ... 850, $0^{\circ} \mathrm{C}$)	
	22	Pt1000 (-200.0 $\left.\ldots .850 .0{ }^{\circ} \mathrm{C}\right)$	
	23	special 0...4500 Ohm (preset to KTY11-6)	
	24	special 0... 4500 hm	
	30	0... $20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$ (
	41	special -2,5...115 mV (1)	
	42	special -25...1150mV (1)	
	50	potentiometer $0 \ldots .1600 \mathrm{hm}$ (1)	
	51	potentiometer 0... 4500 hm (1)	
	52	potentiometer 0... 1600 Ohm (1)	
	53	potentiometer 0...4500 Ohm (1)	
Lar		Measured value correction / scaling	0
	0	Without scaling	
	1	Offset correction (at [AL level) (offset entry is at controller [RL level)	
	2	2-point correction (at [9: level) (calibration is at controller [: CL l level)	
	3	Scaling (at PR,-R level)	
	4	Automatic calibration (DAC)	
In.t	$\begin{gathered} -1999 \ldots . .999 \\ 9 \end{gathered}$	Alternative value for error at INP3 If a value is adjusted, this value is used for display and calculation in case of error (e.g. FAIL). . Before activating a substitute value, the effect in the control loop should be considered!	DFF
fAI3		Forcing INP3 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

(1) with current and voltage input signals, scaling is required (see chapter 5.3)
1.17

Name	Value range	Description	Default
Fne. 1		Function of limit 1/2/3	1
$\begin{aligned} & \text { Fnc. } 3 \\ & F_{n c} 3 \end{aligned}$	0	switched off	
	1	measured value monitoring	
	2	Measured value monitoring + alarm latch. A latched limit value can be reset via error list or via a digital input, or by pressing key Z^{2} or $[\mathrm{F}(->+\mathrm{DH}$)	
	3	signal change (change/minute)	
	4	signal change and storage (change/minute)	
$\begin{aligned} & 5 \cdot c .1 \\ & 5 \cdot c .3 \\ & 5 \cdot c .3 \end{aligned}$		Source of Limit 1/2/3	1
	0	process value	
	1	control deviation xw (process value - set-point)	
	2	Control deviation Xw (=relative alarm) with suppression after start-up and setpoint change After switch-on or setpoint change, alarm output is suppressed, until the process value was within the limits once. At the latest after elapse of time $10:$ t the alarm is activated. $(\mathbb{L},!=$ integral time 1 ; parameter $\rightarrow[n, r)$ t_{1}, switched of $\left(t^{\prime},=0\right)$ is considered as ∞, i.e. the alarm is not activated, until the process value was within the limits once.	
	3	measured value INP1	
	4	measured value INP2	
	5	measured value INP3	
	6	effective setpoint Weff	
	7	correcting variable y (controller output)	
	8	control variable deviation xw (actual value - internal setpoint) = deviation alarm to internal setpoint	
	9	difference $\mathrm{x} 1-\mathrm{x} 2$ (utilizable e.g. in combination with process value function "mean value" for recognizing aged thermocouples	
	11	Control deviation .(=relative alarm) with suppression after start-up and setpoint change without time limit After switch-on or setpoint change, alarm output is suppressed, until the process was within the limits once.	
HLSLL		Alarm heat current function (INP2)	0
	0	switched off	
	1	Overload short circuit monitoring	
	2	Break and short circuit monitoring	
LP.RL		Monitoring of control loop interruption for heating (see page 69)	0
	0	switched off/ inactive	
	1	LOOP alarm active. A loop alarm is output, unless the process value reacts accordingly after elapse of $2 \times \mathrm{xE}$, if with $\mathrm{Y}=100 \%$. With $\varepsilon_{1}:=0$, the LOOP alarm is inactive.	
dRE. F		DAC alarm function (see page 69)	0
	0	DAC alarm switched off/inactive	
	1	DAC alarm active	

Configuration level

Name	Value range	Description	Default
Hour	OFF...9999 99	Operating hours (only visible with BlueControl!)	OFF
Swit	OFF...9999 $_{99}$	Output switching cycles (only visible with BlueControl!)	OFF

But. 1 and Dut.a

	Value range	Description	Default
		Method of operation of output OUT1	0
	0	direct / normally open	
	1	inverse / normally closed	
$\begin{aligned} & 4.1 \\ & 4.2 \end{aligned}$		Controller output Y1/Y2	1
	0	not active	
	1	active	
		Limit 1/2/3 signal	0
	0	not active	
	1	active	
		Valve monitoring (DAC)	0
	0	not active	
	1	active	
LPGL		Interruption alarm signal (LOOP)	0
	0	not active	
	1	active	
HE.H2		Heat current alarm signal	0
	0	not active	
	1	active	
HE.5L		Solid state relay (SSR) short circuit signal	0
	0	not active	
	1	active	
$\begin{array}{\|lll} \hline F A & 1.1 \\ F & A & .2 \\ F A & 2.3 \\ \hline A R E I \end{array}$		INP1/ INP2 / INP3 error signal	0
	0	not active	
	1	active	
		PROFIBUS error	0
	0	not active	
	1	active: Profibus trouble, no communication with this instrument.	
fout		Forcing OUT1 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

Configuration parameters Out. 2 = Out. 1 except for:

But.3 and 5uty

$\begin{array}{\|l\|} \hline \text { Name } \\ \hline 1.1 .14 \\ \hline 10 \end{array}$	Value range	Description	Default
		Signal type selection OUT3	0
	0	relay / logic (only visible with current/logic voltage)	
	1	$0 \ldots 20 \mathrm{~mA}$ continuous (only visible with current/logic/voltage)	
	2	$4 \ldots 20 \mathrm{~mA}$ continuous (only visible with current/logic/voltage)	
	3	$0 \ldots 10 \mathrm{~V}$ continuous (only visible with current/logic/voltage)	
	4	$2 \ldots 10 \mathrm{~V}$ continuous (only visible with current/logic/voltage)	
	5	transmitter supply (only visible without OPTION)	
P1.FEL		Method of operation of output OUT3 (only visible when O.TYP=0)	1
	0	direct / normally open	
	1	inverse / normally closed	
Hut.LI	-1999... 9999	Scaling of the analog output for $0 \%(0 / 4 \mathrm{~mA}$ or $0 / 2 \mathrm{~V}$, only visible when $0 . T Y P=1 . .5$)	0
¢ut.I	-1999... 9999	Scaling of the analog output for $\mathbf{1 0 0 \%}$ (20 mA or 10 V , only visible when $0 . T Y P=1 . .5$)	100
リ.5に		Signal source of the analog output OUT3 (only visible when $0 . T Y P=1 . .5$)	1
	0	not used	
	1	controller output yl (continuous)	
	2	controller output y2 (continuous)	
	3	process value	
	4	effective set-point Weff	
	5	control deviation xw (process value - set-point)	
	6	measured value position feedback Yp	
	7	measured value INP1	
	8	measured value INP2	
	9	measured value INP3	
[1F9		Failbehaviour, behaviour of the analog output, if the signal source (0.5	0
	0	upscale	
	1	downscale	
4.2		Controller output Y1/Y2 (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
L 10.1		Limit 1/2/3 signal (only visible when 0.TYP=0)	1
- 17.e.	0	not active	
L 10.3	1	active	
-176. ${ }^{\text {d }}$		Valve monitoring (DAC) (only visible when O.TYP=0)	0
	0	not active	
	1	active	
LP.75		Interruption alarm signal (LOOP) (only visible when 0.TYP=0) (Loop-Alarm)	0
	0	not active	
	1	active	

Configuration level

Name HL.H1	Value range	Description	Default
		Heating current alarm signal (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
HL.5L		Solid state relay (SSR) short circuit signal (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
$\begin{array}{lll} F A & 1.1 \\ F R & .2 \\ F R & 1 . J \\ d F O E I \end{array}$		INP1/ INP2 / INP3 error (only visible when 0.TYP=0)	1
	0	not active	
	1	active	
		PROFIBUS error	0
	0	not active	
	1	active: Profibus trouble, no communication with this instrument.	
fout		Forcing OUT3 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

But.5/Dut.5

Configuration parameters Out. $2=$ Out. 1 except for: Default Lit $\mathbf{t}=0$ U. $\mathbf{Z}=0$
Method of operation and usage of output But. 1 to But.5:
Is more than one signal chosen active as source, those signals are OR-linked.

10.a

Name	Value range	Description	Default
L. ${ }^{\text {L }}$		Local / Remote switching (Remote: adjusting of all values by front keys is blocked)	0
	0	no function (switch-over via interface is possible)	
	1	always active	
	2	DIl switches	
	3	DI2 switches (basic instrument or OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	[F] - key switches	
57.2			0
	0	no function (switch-over via interface is possible)	
	2	DIl switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	[F] - key switches	

$\begin{array}{\|l} \text { Name } \\ 5 F . E \end{array}$	Value range	Description	Default
		Switching to external setpoint $5 P . E$	0
	0	no function (switch-over via interface is possible)	
	1	always active	
	2	DII switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	[F] - key switches	
42		Y/Y2 switching	0
	0	no function (switch-over via interface is possible)	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	[F] - key switches	
	6	(0) - key switches	
H.E		Switching to fixed control output IE	0
	0	no function (switch-over via interface is possible)	
	1	always activated (manual station)	
	2	DII switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	[F] - key switches	
	6	(2) - key switches	
号昭		Automatic/manual switching	0
	0	no function (switch-over via interface is possible)	
	1	always activated (manual station)	
	2	DIl switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	[F] - key switches	
	6	(2) - key switches	
L.aF:		Switching off the controller	0
	0	no function (switch-over via interface is possible)	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	[F] - key switches	
	6	(2) - key switches	
C.L AE		Blockage of hand function	0
	0	no function (switch-over via interface is possible)	
	2	DIl switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	(F) - key switches	

Configuration level

Name	Value range	Description	Default
Erワ.\%		Reset of all error list entries	0
	0	no function (switch-over via interface is possible)	
	2	DIl switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	[F] - key switches	
	6	(2) - key switches	
9 F		Switching of parameter set ($\mathbf{P b}, \mathrm{ti}, \mathrm{td}$)	0
	0	no function (switch-over via interface is possible)	
	2	DIl switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	[F] - key switches	
1. [ha		Switching of the actual process value between Inp1 and X2	0
	0	no function (switch-over via interface is possible)	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	[F] - key switches	
di.fin		Function of digital inputs (valid for all inputs)	0
	0	direct	
	1	inverse	
	2	toggle key function	
fDI1 fDI2 fDI3		Forcing di1/2/3 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

athr

Name	Value range	Description	Default
bind		Baudrate of the interface (only visible with OPTION)	2
	0	2400 Baud	
	1	4800 Baud	
	2	9600 Baud	
	3	19200 Baud	
Madr	1... 247	Address on the interace (only visible with OPTION)	1
PrEy		Data parity on the interface (only visible with OPTION)	1
	0	no parity (2 stop bits)	
	1	even parity	
	2	odd parity	
	3	no parity (1 stopbit)	
AELY	0... 200	Delay of response signal [ms] (only visible with OPTION)	0

Configuration level

Name	Value range	Description	Default
dP.Ad	0... 126	Profibus address	126
be.up		Behaviour as backup controller (see page)	0
	0	No backup functionality	
	1	With backup functionality	
$0{ }^{2}$		Entering parameter for 0 in ppm or \%	0
	0	Parameter for 0 -function in ppm	
	1	Parameter for 0-function in \%	
Un 16		Unit	1
	0	without unit	
	1	${ }^{\circ} \mathrm{C}$	
	2	${ }^{\circ} \mathrm{F}$	
d^{P}		Decimal point (max. number of digits behind the decimal point)	0
	0	no digit behind the decimal point	
	1	1 digit behind the decimal point	
	2	2 digits behind the decimal point	
	3	3 digits behind the decimal point	
LEd		Function allocation of status LEDs 1/2/3/4	0
	10	0UT1, 0UT2, 0UT3, 0UT4	
	11	Heating, alarm 1, alarm 2, alarm 3	
	12	Heating, cooling, alarm 1, alarm 2	
	13	Cooling, heating, alarm 1, alarm 2	
	14	Bus error	
$\begin{aligned} & d 5 P \\ & R . d E L \end{aligned}$	0...10	Display luminosity	5
	$0 . .200$	Modem delay [ms] Additional delay time, before the received message is evaluated in the Modbus. This time is required, unless messages are transferred continuously during modem transmission.	0
FrEq		Switching $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ (only visible with BlueControl!)	0
	0	50 Hz	
	1	60 Hz	
MAst		Modbus master/slave (see page) (visible only with BlueControl')	0
	0	No	
	1	Yes	
CycL	0...240	Master cycle (sec.) (see page) (visible only with BlueControl !	120
AdrO	-32768...32767	Destination address (see page) (visible only with BlueControl!)	1100
AdrU	-32768...32767	Source address (see page) (visible only with BlueControl!)	1100
Numb	0...100	Number of data (see page) (visible only with BlueControl!)	1
ICof		Block controller off (only visible with BlueControl!)	0
	0	Released	
		Blocked	
IAda		Block auto tuning (only visible with BlueControl!)	0
	0	Released	
	1	Blocked	

Configuration level

Name	Value range	Description	Default
IExo		Block extended operating level (only visible with BlueControl!)	0
	0	Released	
	1	Blocked	
ILat		Suppression error storage (visible only with BlueControl!)	0
	0	No: error message remain in the error list until acknowledgement.	
	1	Yes alarms are deleted from the error list as soon as corrected	
Pass	OFF... 9999	Password (only visible with BlueControl!)	OFF
IPar		Block parameter level (only visible with BlueControl!)	0
	0	Released	
	1	Blocked	
ICnf		Block configuration level (only visible with BlueControl!)	0
	0	Released	
	1	Block	
ICal		Block calibration level (only visible with BlueControl!)	0
	0	Released	
	1	Blocked	
CDis3		Display 3 controller operating level (only visible with BlueControl!)	2
	0	No value / only text	
	1	Display of value	
	2	Output value as bargraph	
	3	Control deviation as bargraph	
	4	Process value as bargraph	
TDis3	2...60	Display 3display alternationtime [s/ (only visible with BlueControl.)	10
T.dis 3	8 Zeichen	Text display 3 (only visible with BlueControl!)	
T.InF1	8 Zeichen	Text Inf. 1 (only visible with BlueControl!)	
T.InF2	8 Zeichen	Text Inf. 2 (only visible with BlueControl!)	

1.19 (only visible with BlueControl ${ }^{\circledR}$

Name	Value range	Description	Default
1 in		Linearization for inputs INP1 or INP3 Access to this table is always with selection special thermocouple for ! iP : or I in . 3 or with setting 5.L in $=1$: special linearization for linearization. Default: KTY 11-6 (0...4,5 kOhm)	
HLL int		Unit of linearization table	0
	0	No unit	
	1	In Celsius ${ }^{\circ} \mathrm{Cl}$	
	2	In Fahrenheit ${ }^{\circ} \mathrm{Cl}$	
¢ n. 1	-999.0..99999	Input value 1 The signal is in $[\mu \mathrm{V}]$ or in $[\Omega]$ dependent of input type	1036
\#u.	0,001...9999	Output value 1 Signal assigned to \boldsymbol{i} n. 1	-49,94

Name	Value range	Description	Default
1 n.İ	-999.0.. 99999	Input value 2 The signal is in $[\mu \mathrm{V}]$ or in $[\Omega]$ dependent of input type	1150
\%al	0,001... 9999	Output value 2 Signal assigned to 1 n. \mathbf{I}^{2}	-38,94
	:		
1 n 6	-999.0.. 99999	Input value 16 The signal is in $[\mu \mathrm{V}]$ or in $[\Omega]$ dependent of input type	4470
7ı.6	0,001... 9999	Output value 16 Signal assigned to in. 16	150,0

BlueControl - the engineering tool for the BluePort ${ }^{\circledR}$ controller series

3 engineering tools with different functionality facilitating the device configuration and parameter setting are available (see chapter 9: Accessory equipment with ordering information).
In addition to configuration and parameter setting, blue control ${ }^{\circledR}$ is used for data acquisition and offers long-term storage and print functions. Blue control ${ }^{\circledR}$ is connected to the device via the front-panel interface "BluePort ${ }^{\circledR}$ " by means of PC (Windows $95 / 98 /$ NT) and a PC adaptor.
Description BlueControl ${ }^{\circledR}$: see chapter 8: BlueControl ${ }^{\circledR}$ (page 71).

Configuration level

4.3 Set-point processing

The set-point processing structure is shown in the following picture:

4.3.1 Set-point gradient / ramp

To prevent setpoint step changes, a maximum rate of change is adjustable for parameter \rightarrow setpoint \rightarrow F. 5 . This gradient acts both in positive and negative direction.

With parameter r.5P set to \quad aF as in the factory setting, the gradient is switched off and setpoint changes are made directly.

4．4 Switching behaviuor

With these controllers，configuration parameter EyLL（GanF／Entr／EyLL） can be used for matching the cycle time of 2－point and 3－point controllers．This can be done using the following 4 methods．

4．4．1 Standard（ $54[\mathrm{~L}=\mathrm{B}$ ）

The adjusted cycle times $t \in$ and $t \geq$ are valid for 50% or -50% correcting varia－ ble．With very small or very high values，the effective cycle time is extended to prevent unreasonably short on and off pulses．The shortest pulses result from $1 / 4$ $x: 1$ or $1 / 4 x \leq E$ ．The characteristic curve is also called＂bath tub curve＂

Parameters to be adjusted：$\quad \mathrm{i}:$ min．cycle time 1 （heating）［s］ （PRAR／Entr）

にこ：min．cycle time 2 （cooling）［s］

4．4．2 Switching attitude linear（ $[4[L=1$ ）

For heating（ $\ddagger \mathbf{4}$ ），the standard method（see chapter 4．4．1）is used．For cooling （ $4 \mathbb{L}^{2}$ ），a special algorithm for cooling with water is used．Generally，cooling is en－ abled only at an adjustable process temperature（ EHED ），because low temperatu－ res prevent evaporation with related cooling，whereby damage to the plant is avoided．The cooling pulse length is adjustable using parameter t．an and is fi－ xed for all output values．
The＂off＂time is varied dependent of output value．Parameter E．oFF is used for determining the min＂off＂time．For output of a shorter off pulse，this pulse is suppressed，i．e．the max．effective cooling output value is calculated according to formula t．an／（E．an＋E．aFF）•100\％．
Parameters to be adjusted：EH2日：minimum temperature for water cooling （PRAR／EnEr）
t．an：pulse duration water cooling E．OFF：minimum pause water cooling

Configuration level

4.4.3 Switching attitude non-linear ($\mathrm{CyLL}=己$)

With this method, the cooling power is normally much higher than the heating power, i.e. the effect on the behaviour during transition from heating to cooling may be negative. The cooling curve ensures that the control intervention with 0 to -70% correc-
 ting variable is very weak. Moreover, the correcting variable increases very quickly to max. possible cooling. Parameter F.H2 5 can be used for changing the characteristic curve. The standard method (see section 4.4.1) is also used for heating. Cooling is also enabled dependent of process temperature .

Parameters to be adjusted: F.H2]: adaptation of (non-linear) characteristic (PR-R/[ntr) Water cooling
t.an: Pulse duration water cooling
E.OFF: min. pause water cooling
E.HET: min. temperature for water cooling

4.4.4 Heating and cooling with constant period ($[4[L=3$)

1 and $E ?$ are met in the overall output range. To prevent unreasonably short pulses, parameter t^{P} is used for adjusting the shortest pulse duration. With small correcting values which require a
 pulse shorter than the value adjusted in $E P$, this pulse is suppressed. However, the controller stores the pulse and totalizes further pulses, until a pulse of duration $E P^{\prime}$ can be output.

Parameters to be adjusted:
t : : Min. cycle time 1 (heating) [s] (PRHA/EnEr)
$E 己$: min. cycle time 2 (cooling) [s]
$E P: \quad$ min. pulse length [s]

Configuration level

4.5 Configuration examples

4.5.1 On-Off controller / Signaller (inverse)

EanF/Entr: 5PFn = 0
Cfinc =
CRAE $=0$
EanF/Buti: RAEt = 0
$4.1=1$
PR日月 / [ntr: Hys. $=0 \ldots 9999$
PRAR/EnEr: HS5H = 0... 9999
PR-R / 5EEP: 5PLZ $=-1999 \ldots 999$
5PH, =-1999... 9999
set-point controller signaller with one output inverse action (e.g. heating applications) action But. I direct control output Y 1 active switching difference below 59 switching difference above 59 set-point limit low for Weff set-point limit high for Weff
(i) For direct signaller action, the controller action must be changed
(LanF / Entr / ERat = 1)

4.5.2 2-point controller (inverse)

EanF/Entr: 5PFn = \quad I
CFOE =
CRAL $=0$
[anF/But. : Batet = a
$4.1=1$
PRif/[ntr: Pb: = 1... 9999
t.1 = 0,1... 9999

Edi = 0,1...9999
t $=0,4 \ldots 9999$
PR-R / 5ELP: 5P: ロ = -1999... 9999 set-point limit low for Weff
5P.H = -1999... 9999 set-point limit high for Weff
(i)

For direct action, the controller action must be changed
(GanF / Entr / CRat = () .

Configuration level

4.5.3 3-point controller (relay \& relay)

Eanf/Entr	SPFn FFnc ERAL	$\begin{aligned} & =0 \\ & =3 \\ & =0 \end{aligned}$	set-point controller 3 -point controller (2xPID) action inverse (e.g. heating applications)
Eanf/ inuti	Bract	= 0	action Sut. 1 direct
	4.1	$=1$	control output Y1 active
	4.2	$=0$	control output Y2 not active
Canf/ Butas:	BRat	$=\square$	action 0 ut. 3^{2} direct
	4.	\square	control output Y1 not active
	4.3	1	control output Y2 active
PRAR / Entr:	Pb:	= 1... 9999	proportional band 1 (heating) in units of phys. quantity (e.g. ${ }^{\circ} \mathrm{C}$)
	Pbe	= 1... 9999	proportional band 2 (cooling) in units of phys. quantity (e.g. ${ }^{\circ} \mathrm{C}$)
	E, 1	= 0,1... 9999	integral time 1 (heating) in sec.
	E12	= 0,1... 9999	derivative time 2 (cooling) in sec.
	Ed	$=0,1 \ldots 9999$	integral time 1 (heating) in sec.
	tde	= 0,1...9999	derivative time 2 (cooling) in sec.
	E1	$=0,4 \ldots 9999$	min. cycle time 1 (heating)
	E 2	$=0,4 \ldots 9999$	min. cycle time 2 (cooling)
	$5 H$	= 0... 9999	neutr. zone in units of phys.quantity
PRAR / 5EEP:	5P10	= -1999... 9999	set-point limit low for Weff
	5PH,	= -1999... 9999	set-point limit high for Weff

4.5.4 3-point stepping controller (relay \& relay)

[anF/Entr: SPEn = a
Efnc $=4$
CREt $=\mathrm{B}$
[anF/But.: BREt = B
4. $1=1$
$4.3=\square$
[anf/Buta' Bifte = a
$4.1=\square$
$4.2=1$
PRIA/Entr: Pb: = 1... 9999
Ł.1 = 0,1... 9999
tdi = 0,1... 9999
ti= 0,4... 9999
与H = 0... 9999
tP $=0,1 \ldots 9999$
tt = 3... 9999
set-point controller
3 -point stepping controller inverse action
(e.g. heating applications)
action But. I direct
control output Y1 active control output Y2 not active action 10.5 direct control output Y1 not active control output Y2 active proportional band 1 (heating) in units of phys. quantity (e.g. ${ }^{\circ} \mathrm{C}$) integral time 1 (heating) in sec. derivative time 1 (heating) in sec. min. cycle time 1 (heating)
neutral zone in units of phy. quantity
min . pulse length in sec.
actuator travel time in sec.

PRAR / 5ELP: 5PLL = -1999... 9999 set-point limit low for Weff
5P.H1 = -1999... 9999 set-point limit high for Weff
For direct action of the 3-point stepping controller, the controller output action must be changed (LanF / Entr / CREL=1) .

Configuration level

4.5.5 Continuous controller (inverse)

$$
\text { Lanf/Entr: } \begin{aligned}
\text { SPFn } & =\square \\
\text { EFnE } & =\square \\
\text { EAct } & =a
\end{aligned}
$$

[anF/But.3: Busp= 1/2
But. $=-1999 \ldots 9999$
But.i = -1999... 9999
PRAR / Entr: Pb: $=1 \ldots 9999$
t.i = 0,1... 9999
tdi = 0,1... 9999
$t:=0,4 \ldots 9999$
PR-R / SELP: 5PLD $=-1999 \ldots 999$
5Р.H, = -1999... 9999
set-point controller
continuous controller (PID) inverse action
(e.g. heating applications)

But. 3 type ($0 / 4 \ldots 20 \mathrm{~mA}$)
scaling analog output $0 / 4 \mathrm{~mA}$
scaling analog output 20 mA
proportional band 1 (heating) in units of phys. quantity (e.g. ${ }^{\circ} \mathrm{C}$)
integral time 1 (heating) in sec.
derivative time 1 (heating) in sec.
min. cycle time 1 (heating)
set-point limit low for Weff
set-point limit high for Weff

For direct action of the continuous controller, the controller action must be changed (Lanf / [ntr / CRat = i) .

4.5.6 $\Delta \mathrm{Z} \quad \mathrm{Y}$ - Off controller / 2-point controller with pre-contact

[anF/Entr: 5PFn =
[Fnc = ᄅ
EAEt =
[anf/But.i: BRat = B
4. $=1$
$4.3=0$
[anF/Buta: BRat = 0
$41=\square$
$4.2=1$
PRrA/Entr: Pb: = 1... 9999
E.: = 0,1... 9999

Ed! = 0,1... 9999
ti=0,4...9999
$5 \mathrm{H}=0 \ldots 999$
d.5P = -1999... 9999
set-point controller
Δ-Y-Off controller inverse action
(e.g. heating applications)
action But I direct
control output Y1 active
control output Y2 not active action 10 E. \mathbf{I}^{3} direct
control output Y1 not active
control output Y2 active
proportional band 1 (heating)
in units of phys. quantity (e.g. ${ }^{\circ} \mathrm{C}$)
integral time 1 (heating) in sec.
derivative time 1 (heating) in sec.
min. cycle time 1 (heating)
switching difference
trigg. point separation suppl. cont.
$\Delta / \mathrm{Y} /$ Off in units of phys. quantity
PRTR / 5ELP: 5PLG = -1999... 9999 set-point limit low for Weff
$5 \mathrm{FH}, \quad=-1999 \ldots 9999$ set-point limit high for Weff

Configuration level

4.5.7 Continuous controller with position controller

(Fntr/[Fnc=6)

Basically, this controller function is a cascade. A slave controller with three-point stepping behaviour working with position feedback Yp as process value (INP2 or INP3) is added to a continuous controller.

Lant/Entr	5PFn E.Fnc E.AEL	$\begin{aligned} & =\square \\ & =\square \\ & =\square \end{aligned}$	setpoint controller continuous controller with position controller inverse output action (e.g. heating applications)
Cank/InPes:	$\begin{aligned} & \text { IFnc } \\ & 5.54 p \end{aligned}$	$\begin{aligned} & =3 \\ & =50 \end{aligned}$	position feedback Yp sensor e.g. potentiometer $0 . .160 \Omega$
Conf/ But. ${ }^{\text {a }}$	$\begin{aligned} & 1.8 \mathrm{ct} \\ & 4.1 \\ & 4.2 \end{aligned}$	$\begin{aligned} & =0 \\ & =4 \\ & =0 \end{aligned}$	direct output action Rut. control output Y1 active control output Y2 not active
Cont/ Dutes:	$\begin{aligned} & 0.8 c t \\ & 3.1 \\ & 4.2 \end{aligned}$	$\begin{aligned} & =\square \\ & =\square \\ & =4 \end{aligned}$	control output Y1 not active control output Y 2 active
PR,R/Entr:	$\begin{aligned} & \text { Pb: } \\ & E_{1}! \\ & E d^{\prime} \\ & E H \\ & 5 H \end{aligned}$	$\begin{aligned} & =0,1 \ldots 9999 \\ & =1 \ldots 9999 \\ & =1 \ldots 999 \\ & =0,4 . . .9999 \\ & =0 . .9999 \end{aligned}$	proportional band 1 (heating) in units of the physical quantity (e.g. ${ }^{\circ} \mathrm{C}$) integral time 1 (heating) in sec. derivative time 1 (heating) in sec. min. cycle tim 1 (heating) switching difference

4.5.8 Measured value output

[anF/But.3/4: BLYP=

$$
\begin{aligned}
& =2 \\
& =3 \\
& =4 \\
\text { But.i } & =-1999 \ldots 9999 \\
\text { But.i } & =-1999 \ldots 9999 \\
\text { Buse } & =3
\end{aligned}
$$

But.3/4 0...20mA continuous
But.3/4 4...20mA continuous
But.3/4 $0 \ldots 10 \mathrm{~V}$ continuous
But. $3 / 42 \ldots 10 \mathrm{~V}$ continuous
scaling 8 L E. $3 / 4$
for $0 / 4 \mathrm{~mA}$ or $0 / 2 \mathrm{~V}$
scaling $8 \mathrm{Lut.3/4}$
for 20 mA or 10 V
signal source for $\square u t .3 / 4$ is the process value

5 Parameter setting level

5.1 Parameter survey

Adjustment:

- The parameters can be adjusted by means of keys $\Delta \square$
- Transition to the next parameter is by pressing key \square
- After the last parameter of a group, danE is displayed, followed by automatic change to the next group.

Return to the beginning of a group is by pressing the Ξ key for $\mathbf{3} \mathbf{~ s e c}$.
If for 30 sec . no keypress is excecuted the controler returns to the process value and setpoint display (Time Out $=30 \mathrm{sec}$.)

5.2 Parameters

EnE,

Name	Value range	Description	Default
P!	1...9999 (1)	Proportional band 1 (heating) in phys. dimensions (e.g. ${ }^{\circ} \mathrm{C}$)	100
Pbe	1... 9999 (Proportional band 2 (cooling) in phys. dimensions (e.g. ${ }^{\circ} \mathrm{C}$)	100
E.1	0,1...9999	Integral action time 1 (heating) [s]	180
$E 12$	0,1...9999	Integral action time 2 (cooling) [s]	180
Ed!	0,1...9999	Derivative action time 1 (heating) [s]	180
EDE	0,1...9999	Derivative action time 2 (cooling) [s]	180
!	0,4...9999	Minimal cycle time 1 (heating) [s]. The minimum impulse is $1 / 4 \times \mathrm{xt}$	10
E2	0,4...9999	Minimal cycle time 2 (heating) [s$]$. The minimum impulse is $1 / 4 \mathrm{x}+2$	10
$5 H$	0... 9999	Neutral zone or switching differential for on-off control [phys. dimensions)	2
H35.L	0... 9999	Switching difference Low signaller [engineering unit]	1
Нउ5.	0... 9999	Switching difference High signaller [engineering unit]	1
d. 5 P	-1999... 9999	Trigger point seperation for additional contact $\Delta / \mathrm{Y} /$ OffTphys. dimensions]	100
E^{P}	0,1...9999	Minimum impulse [$[\mathrm{s}]$	DFF
Et	3... 9999	Motor travel time $[\mathrm{s}]$	60
Yi,	-120...120	Lower output limit [\%]	0
4H,	-120...120	Upper output limit [\%]	100
42	-100... 100	2. correcting variable	0
4.4	-100... 100	Working point for the correcting variable [\%]	0
9inh	-100...100	Limitation of the mean value $\mathrm{Ym}[\%]$	5
L.3n	0... 9999	Max. deviation xw at the start of mean value calculation [phys. dimensions]	8
EHET	-1999...9999	Min. temperature for water cooling. Below the set temperature no water cooling happens	0
E.on	0,1...9999	Impulse lenght for water cooling. Fixed for all values of controller output.The pause time is varied.	1
E.OFF	1... 9999	Min. pause time for water cooling. The max. effective controller output results from E.an/(E.an + L.aFF) $100^{\%}$	10
F.HET	0,1...9999	Modification of the (non-linear) water cooling characteristic (see page 46)	1
听5	-120...120	Zero offset	0
tEnp	0...9999	Sensor temperature (in engineering units e.g. ${ }^{\circ} \mathrm{C}$) With oxygen measurement (0) (see page 66)	50

(1)Valid for [anF/athr/dP $=\mathbb{B}$. With $d P=1 / 2 / 3$ also $0,1 / 0,01 /$ 0,001 is possible.

PR-. 2

Name	Value range	Description	Default
Pb ${ }^{\text {P }}$	1... 9999 (1)	Proportional band 1 (heating) in phys. dimensions (e.g. $\left.{ }^{\circ} \mathrm{C}\right)$, 2. parameter set	100
5 F	1... 9999 (1)	Proportional band 2 (cooling) in phys. dimensions (e.g. ${ }^{\circ} \mathrm{C}$), 2. parameter set	100
$E 1 E^{9}$	0,1...9999	Integral action time 2 (cooling) [s], 2. parameter set	10
L 1 1	0,1...9999	Integral action time 1 (heating) [s], 2. parameter set	10
Ld \square_{2}	0,1...9999	Derivative action time 1 (heating) [s], 2. parameter set	10
EdET	0,1...9999	Derivative action time 2 (cooling) [s], 2. parameter set	10

SELP

Name	Value range	Description	Default
$5 P .1$	$-1999 . .9999$	Set-point limit low for Weff	0
$5 P . H$,	$-1999 . .9999$	Set-point limit high for Weff	900
$5 P . L^{\prime}$	$-1999 . .9999$	Set-point 2.	0
$r .5 P$	$0 \ldots . .9999$	Set-point gradient $[/ \mathrm{min}]$	DFF
SP	$-1999 . . .9999$	Set-point (only visible with BlueControl!)	0

 configuration \rightarrow Controller page

inP. 1

Name	Value range	Description	Default
Inl. 1	-1999...9999	Input value for the lower scaling point	0
DuL. 1	-1999... 9999	Displayed value for the lower scaling point	0
InH.I	-1999... 9999	Input value for the upper scaling point	20
Dut.	-1999...9999	Displayed value for the lower scaling point	20
E.F	0,0...9999	Filter time constant [s]	0,5
Ete. 1	$\begin{array}{\|c\|} \hline 0 \ldots .100\left({ }^{\circ} \mathrm{C}\right) \\ 32 \ldots . .212\left({ }^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	External cold-junction reference temperature (external TC)	BFF

10PB

Name	Value range	Description	Default
1 nL.E	-1999... 9999	Input value for the lower scaling point	0
HuL.E	-1999... 9999	Displayed value for the lower scaling point	0
1 nhte	-1999... 9999	Input value for the upper scaling point	50
	-1999... 9999	Displayed value for the upper scaling point	50
L.FE	0,0... 9999	Filter time constant [s]	0,5

Name	Value range	Description	Default
10.3	-1999... 9999	Input value for the lower scaling point	0
HuL. 3	-1999... 9999	Displayed value for the lower scaling point	0
1 nhis	-1999... 9999	Input value for the upper scaling point	20
Huti]	-1999... 9999	Displayed value for the upper scaling point	20
E.F]	-1999... 9999	Filter time constant [s]	0
ELE. $]$	$\begin{aligned} & 0 \ldots 100\left({ }^{\circ} \mathrm{C}\right) \\ & 32 \ldots . .212\left({ }^{\circ} \mathrm{F}\right. \\ & \hline \end{aligned}$	External cold-junction reference temperature (external TC)	DFF

1 19

Name	Value range	Description	Default
L. 1	-1999... 9999	Lower limit 1	10
H. 1	-1999... 9999	Upper limit 1	10
Hy5.	0... 9999	Hysteresis limit 1	1
DEL. 1	0... 9999	Alarm delay from limit value 1	0
L.E	-1999... 9999	Lower limit 2	RFF
H.I	-1999... 9999	Upper limit 2	RFF

(2) Resetting the controller configuration to factory setting (Default) or resetting to the customer-specific default data set
\rightarrow chapter 11.1 (Page 80)

Parameter setting level

5.3 Input scaling

When using current, voltage or resistance signals as input variables for inp. i, InP.E or/and $n P .3$ scaling of input and display values at parameter setting level is required. Specification of the input value for lower and higher scaling point is in the relevant electrical unit ($\mathrm{mA} / \mathrm{V} / \Omega$).

$5.54 P$	Input signal	1 nL.x	FuL.x	1 nitix	Futix
$\begin{gathered} 30 \\ (0 \ldots 20 \mathrm{~mA}) \end{gathered}$	$0 \ldots 20 \mathrm{~mA}$	0	any	20	any
	$4 \ldots 20 \mathrm{~mA}$	4	any	20	any
$\begin{gathered} 40 \\ (0 . . .10 \mathrm{~V}) \end{gathered}$	$0 \ldots 10 \mathrm{~V}$	0	any	10	any
	2... 10 V	2	any	10	any

5.3.1 Input $\{\cap P \cdot 1$ and $: n P 3$

Parameters int.x, Dul.x, Intix and Dutix are only visible if [anF/InPx/Earr = $]$ is chosen.
In addition to these settings, $I n$ L.x and 1 nitx can be adjusted in the range $(0 \ldots 20 \mathrm{~mA} / 0 \ldots 10 \mathrm{~V} / \Omega)$ determined by selection of $5.2 \Psi^{P}$.

For using the predetermined scaling with thermocouple and resistance thermometer (Pt100), the settings for 1 in.x and Lut.x and for 1 nitix and Butix. must have the same value.
(i)

Input scaling changes at calibration level $(\rightarrow$ page 61) are displayed by input scaling at parameter setting level. After calibration reset (DFF), the scaling parameters are reset to default.

5.3.2 Input in ${ }^{1.2}$

5.typ	Input signal	int. ${ }^{\text {a }}$	[uL. ${ }^{\text {a }}$	$1 \mathrm{nH.z}$	[um. ${ }^{3}$
30	$0 . .20 \mathrm{~mA}$	0	any	20	any

In addition to these settings, $\operatorname{nL.E}$ and int. ${ }^{2}$ can be adjusted in the range $(0 \ldots 20 / 50 \mathrm{~mA} / \Omega)$ determined by selection of $5.5 \Psi P$.

6 Calibration level

 or ${ }^{2}$ is chosen.

The measured value can be matched in the calibration menu ([RL). Two methods are available:

Offset correction

(EanF/l nP. $/$ /Larr =):

- possible on-line at the process

2-point correction

(Lanf/InPl/[arr=e'):

- is possible off-line with process value simulator

Offset correction ([anF/InP.|/Earr = ():

I nl. I: The input value of the scaling point is displayed.
The operator must wait, until the process is at rest.
Subsequently, the operator acknowledges the input value by pressing key \square.
But. 1: The display value of the scaling point is displayed.
Before calibration, BuL. 1 is equal to 1 nL. 4 .
The operator can correct the display value by pressing keys $\Delta \square$. Subsequently, he confirms the display value by pressing key \square.

I nL. t : The input value of the lower scaling point is displayed.
The operator must adjust the lower input value by means of a process value simulator and confirm the input value by pressing key \square.
Iul. i: The display value of the lower scaling point is displayed.
Before calibration, iut. 1 equals I int. 1.
The operator can correct the lower display value by pressing the $\Delta \square$ keys. Subsequently, he confirms the display value by pressing key \square.
I IH. 4: The input value of the upper scaling point is displayed. .
The operator must adjust the upper input value by means of the process value simulator and confirm the input value by pressing key Ξ.
BuH. f : The display value of the upper scaling point is displayed.
Before calibration [uthit equals Intit.
The operator can correct the upper display value by pressing keys $\Delta \nabla$ Subsequently, he confirms the display value by pressing key Ξ.

The parameters (iut.i, iuHit) changed at [月L level can be reset by adjusting the parameters below the lowest adjustment value ($B F F$) by means of decrement key ∇.

7 Special functions

7.1 DAC ${ }^{\circledR}$ - motor actuator monitoring (Digital Actor Control DAC ${ }^{\circledR}$)

With all controllers with position feedback Yp, the motor actuator can be monitored for functional troubles. The DAC^{\circledR} function can be started by chosing the parameter $E \mathrm{~F}$ に $=5$ or 5 at the configuration level (EanF):
 position feedback Yp as potentiometer

- Eanf/EnEr/ERの=5 Continuous controller with integrated positioner and position feedback Yp as potentiometer

If an error occures, the controller switches to manual operation (- LED blinks) and no impulses are given out any longer. If one of the relays shall switch when a

The system detects the following stepping controller errors:

- defective motor
- defective capacitor (wrong rotating direction)
- wrong phase followers (wrong rotating direction)
- defective force transmission at spindle or drive
- excessive backlash due to wear
- jamming of the control valve e.g. due to foreign body

In these cases the controller will change to manual operation and the outputs will be switched off. Is the controller switched to automatic operation again or any modification is done the controller activates the DAC function again and the outputs will be setted.

Resetting of a DAC error:

After solving the technical problem the DAC errror can be acknowledged in the error list. Thereafter the controller works again in normal operation mode.

See also chapter 3.4 "Mainenance manager / Error list", page 12 ff.

Functioning of the DAC function

 Therewith no wrong detection of blocking or wrong method of operation can be recognized.
The automatic calibration can be used with drives outfitted with spring assembly.

Execution of the calibration:

It is controlled if the mean alteration between two messurements is enough for the DAC monitoring. The calibration will be stopped if the alteration between two messurements is too small.
The position of 0% is searched. Therefor the drive will be closed until there is no changing of the input signal for $0,5 \mathrm{sec}$.
Assuming that the drive is outfitted with spring assembly, the drive is opened for $2,8 \mathrm{sec}$. The drive should then still be within the spring assembly. This position is allocated and stored as 0%.
With the same procedure the position for 100% is allocated and stored.
Simultaneously the motor running time is determined and saved as parameter $t \mathbb{E}$. Afterwards the controller sets the drive in the position before calibration.
Was the controller in automatic mode before calibration it will be set to automatic mode again otherwise it remains in manual mode.

The following errors can be occure during calibration:

- the change of the Yp input is to small, no monitoring is possible
- the motion is in wrong direction
- the Yp input is broken

In these cases the automatic calibration will be stopped and the controller remains in manual mode.

If the automatic calibration leads to no resonable results the calibration of the Yp input can be done manual.

If the conroller reaches the positions of 0% or 100% the outputs will be switched off. Also in manual mode it is not possible to exceed these limits.

Because no controller with continuouse output and $Y p$ input is defined there won't be the DAC function for this controlling type.

$7.2 O_{2}$ measurement

This function is available only on the instrument version with INP3.
As the O_{2}-measurement result range can extend over many decades, automatic display switch-over between " \% " and "ppm" was realized.

The instantaneous unit is displayed in the lower line.
With set-point changing via keys \triangle or
∇, the unit of the set-point and of the other parameters is displayed.

Lambda probes (λ probes) are used as sensors.
The electromotive force (in Volts) generated by λ probes is dependent of instantaneous oxygen content and temperature. Therefore, KS 9x-1 can only evaluate exact measurement results, if it knows the sensor temperature.
Distinction of heated and non-heated lambda probes is made. Both can be evaluated by KS $9 \mathrm{x}-1$.

Heated lambda probes
Controlled heating which ensures constant temperature is integrated in the heated λ probe. This temperature must be entered in KS $9 \mathrm{x}-1$ parameter Probe temperature.

Parameter \rightarrow Controller \rightarrow Probe temperature $\rightarrow \ldots . . .{ }^{\circ} \mathrm{C}\left(/{ }^{\circ} \mathrm{F}\right.$ - dependent of configuration)

$$
\begin{array}{|c|c|c|}
\hline \hline \text { EnLr } \rightarrow \text { EEnの } & \text { temp. } & 0 \ldots 9999 \\
\hline \hline
\end{array}
$$

Non-heated lambda probes

With the probe always operated at a fixed, known temperature, a procedure as used for a heated probe can be used.
A non-heated λ probe is used, unless the temperature is constant. In this case, the probe temperature in addition to the probe mV value must be measured. For this purpose, any temperature measurement with one of the analog inputs INP2 or INP3 can be used. During function selection, the input must be set to X2 (second process value).

7.2.1 Connection

Connect the input for the lambda probe to INP1.
Use terminals A15 and A17.
If necessary, temperature measurement must be connected to INP2 or INP3.

7.2.2 Configuration:

Oxygen measurement

Oxygen measurement with heated lambda probe
Controller \rightarrow Process value processing $\rightarrow 7: \mathrm{O}_{2}$ functions with constant probe temperature

Rntr \rightarrow E.EyP	7	02-const

Oxygen measurement with non-heated lambda probe
Controller \rightarrow Process value processing $\rightarrow \mathrm{O}_{2}$ functions with measured probe temperature

[ntr \rightarrow [LEyP	8	02+temp

Input $1 \rightarrow$ Function INP1 \rightarrow : process value X 1

$\operatorname{lnP}: 1 \rightarrow$ ifnc	7	X1-Input

In input 1, the sensor type is set for one of the high-impedance voltage inputs: Input $1 \rightarrow$ Sensor type $\rightarrow 42$: special $(-25 \ldots 1150 \mathrm{mV})$ or

41: special ($-2,5 \ldots 115 \mathrm{mV}$)		
	41	115 mV
$\operatorname{lnP} .1 \rightarrow 5.54 P$	42	1150 mV

Input $1 \rightarrow$ meas. value correction $\rightarrow 0$: no correction

| InP. $1 \rightarrow 5 . L$ no | 0 | no |
| :--- | :--- | :--- | :--- |

Temperature measurement (required with non-heated lambda probe)

Any temperature measurement with one of analog inputs INP2 or INP3 can be used. Select input X2 during function selection (second set-point).
(i) With O_{2} measurement, evaluation in ppm or $\%$ must be specified for all parameters related to the process value.
This is done centrally during configuration.
Other \rightarrow Parameter unit for $\mathrm{O}_{2} \rightarrow 0$: parameter for O_{2} function in ppm
1: parameter for O_{2} function in $\%$

athr \rightarrow ロL	0	unit: ppm
athr \rightarrow OZ	1	unit: $\%$

Whether the temperature of the non-heated λ probe is specified in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ can be selected during configuration.
Other \rightarrow Unit $\rightarrow 1$: in Celsius
2: in Fahrenheit

athr \rightarrow Lint	1	${ }^{\circ} \mathrm{C}$
athr \rightarrow Lint	2	${ }^{\circ} \mathrm{F}$

Special functions

7.3 Linearization

Linearization for inputs INP1 or INP3
Access to table " $L i n$ " is always with selection of sensor type S.TYP $=18$: special thermocouple in INP1 or INP3, or with selection of linearization 5.1 in 1: special linearization.
Dependent of input type, the input signals are specified in $\mu \mathrm{V}$ or in Ohm dependent of input type.

With up to 16 segment points, non-linear signals can be simulated or linearized.
 ... straight lines. The straight line between the first two segments is extended downwards and the straight line between the two largest segments is extended upwards. I.e. a defined output value is also provided for each input value. When switching an $I n$ nalue to AFF , all other ones are switched off. Condition for these configuration parameters is an ascending order.

7.4 Loop alarm

The loop alarm monitors the control loop for interruption (not with three-point stepping controller and not with signallers.) With parameter LF'. FL switched to 1 (= loop alarm active), an interruption of the control loop is detected, unless the process value reacts accordingly with $\mathrm{Y}=100 \%$ after elapse of 2 xTi .
The loop alarm shows that the control loop is interrupted. You should check heating or cooling circuit, sensor, controller and motor actuator.
During self-tuning, the control loop is not monitored (loop alarm is not active).

7.5 Heating current input / heating current alarm

The heating current alarm monitors the heating current.
In addition to short circuit monitoring, checking either for overload (current > heating current limit value) or for interruption (current $<$ heating current limit value) is done.
Each of the analog inputs can be used as measurement input.
If electrical heating is concerned, INP2 which is always provided can be configured for measuring range $0 . . .50 \mathrm{~mA} \mathrm{AC}$ and connected directly using a heating current transformer.
\triangle
With $:$: $<400 \mathrm{~ms}$ or \boldsymbol{E} P $<200 \mathrm{~ms}$ (effective time!), heating current monitoring is ineffective.

7.6 KS9x-1 as Modbus master

This function is only selectable with BlueControl (engineering tool)!
Additions athr (only visible with BlueControl!)

Name	Value range	Description MASt	Controller is used as Modbus master
	0	Slave	0
Cycl	1	$0 \ldots 200$	Master
Cycle time [ms] for the Modbus master to transmit its			
data to the bus.			

The KS9x-1 can be used as Modbus master ([onF/athr / MASt = 1). The Modbus master sends ist data to all slaves (Broadcast message, controller adress 0). It transmits its data (modbus adress AdrU) cyclic with the cycle time Cycl to the bus. The slave controller receives the data transmitted by the masters and allocates it to the modbus target adress AdrO. If more than one data should be transmitted by the master controller (Numb > \mathbf{i}), the modbus adress AdrU indicates the start adress of the data that should be transmitted and AdrO indicates the first target adress where the received data should be stored. The following data will be stored at the logically following modbus target adresses.
With this it is possible e.g. to specify the process value of the master controller as set-point for the slave controllers.

7.7 Back-up controller (PROFIBUS)

Back-up operation: calculation of the control outputs is in the master. The controller is used for process value measurement, correcting variable output and for display.
With master or communication failure, control is taken over independently and bumplessly by the controller.

8 BlueControl

BlueControl is the projecting environment for the BluePort ${ }^{\circledR}$ controller series of PMA. The following 3 versions with graded functionality are available:

Functionality	Mini	Basic
Parameter and configuration setting	yes	yes
Controller and loop simulation	yes	yes
Download: transfer of an engineering to the controller	yes	yes
Online mode / visualization	SIM only	yes
Defining an application specific linearization	yes	yes
Configuration in the extended operating level	yes	yes
Upload: reading an engineering from the controller	SIM only	yes
Basic diagnostic functions	no	no
Saving data file and engineering	no	yes
Printer function	no	yes
Online documentation, help	yes	yes
Implementation of measurement value correction	yes	yes
Data acquisition and trend display	SIM only	yes
Wizard function	yes	yes
Extended simulation	no	no
Customer-specific default data-set	no	no
Programeditor (KS 90-1programmer only)		yes
Support for the "railline"-system	no	no

The mini version is - free of charge - at your disposal as download at PMA homepage www.pma-online.de or on the PMA-CD (please ask for).

At the end of the installation the licence number has to be stated or DEMO mode must be chosen.

At DEMO mode the licence number can be stated subsequently under Help \rightarrow Licence \rightarrow Change.

9 Versions

Accessories delivered with the unit

Operating manual (if selected by the ordering code)

- 2 fixing clamps
- operating note in 12 languages

Accessory equipment with ordering information

Description		Order no.
Heating current transformer 50A AC		$9404-407-50001$
PC-adaptor for the front-panel interface		$9407-998-00001$
Standard rail adaptor	German	$9407-998-00061$
Operating manual	English	$9499-040-62918$
Operating manual	French	$9499-040-62911$
Operating manual	Russian	$9499-040-62932$
Operating manual	German	$9499-040-62965$
Interface description Modbus RTU	English	$9499-040-63718$
Interface description Modbus RTU	Mini	Download
BlueControl (engineering tool)	Basic	
BlueControl (engineering tool)	Expert	
BlueControl (engineering tool)		$9407-999-11001$
		$9407-999-11011$

10 Technical data

INPUTS

PROCESS VALUE INPUT INP1

Resolution:
Decimal point:
Dig. input filter:
Scanning cycle:
Measured value correction:
>14 bits
0 to 3 digits behind the decimal point adjustable 0,000... 9999 s
100 ms
2-point or offset correction

Thermocouples

\rightarrow Table 1 (page 77)
Internal and external temperature compensation

Input resistance:	$\geq 1 \mathrm{M} \Omega$
Effect of source resistance:	$1 \mu \mathrm{~V} / \Omega$

Internal temperature compensation
Maximal additional error:
$\pm 0.5 \mathrm{~K}$

Sensor break monitoring
Sensor current:
Configurable output action
Thermocouple to specification
Measuring range - $25 . . .75 \mathrm{mV}$ in conjunction with the linearization can be used for connecting thermocouples which are not included in Table 1.

Resistance thermometer

\rightarrow Table 2 (page 77)

Connection:
Lead resistance:
Input circuit monitor:

3 -wire
max. 30 Ohm
break and short circuit

Special measuring range

BlueControl (engineering tool) can be used to match the input to sensor KTY 11-6 (characteristic is stored in the controller).

Physical measuring range:	$0 . .4500 \mathrm{ohm}$
Linearization segments	16

Current and voltage signals

\rightarrow Table 3 (page 77)

Span start, end of span: anywhere within measuring range
selectable -1999... 9999
16 segments, adaptable with BlueControl
adjustable
12.5\% below span start (2mA, 1V)

SUPPLEMENTARY INPUT INP2

Resolution: >14 bits
Scanning cycle: $\quad 100 \mathrm{~ms}$

Heating current measurement

via current transformer (\rightarrow Accessory equipment)

Measuring range:
Scaling:
0... 50 mA AC
adjustable -1999...0.000...9999 A

Current measuring range

Technical data as for INP1

Potentiometer

\rightarrow Table 2 (page 77)
Connection: 2-wire
Lead resistance: max. 30 Ohm
Input circuit monitor: Break

SUPPLEMENTARY INPUT INP3 (OPTION)

Resolution: $\quad>14$ bits
Scanning cycle: $\quad 100 \mathrm{~ms}$
Technical data as for INP1 except 10V range.

CONTROL INPUTS DI1, DI2

Configurable as switch or push-button!
Connection of a potential-free contact suitable for switching "dry" circuits.

Switched voltage:
Current:5 V
$100 \mu \mathrm{~A}$

CONTROL INPUTS DI2, DI3 (OPTION)

The functions of control input di2 on the analog card and of di2 on the options card are logically ORed.
Configurable as direct or inverse switches or keys. Optocoupler input for active triggering.

Nominal voltage
Current sink (IEC 1131 type 1)
Logic "0"
Logic "1"
Current requirement
$-3 . .5 \mathrm{~V}$
24 V DC external
15... 30 V
approx.. 5 mA

TRANSMITTER SUPPLY UT (OPTION)

Power: $\quad 22 \mathrm{~mA} / \geq 18 \mathrm{~V}$

As analog outputs OUT3 or OUT4 and transmitter supply U_{T} are connected to different voltage potentials, an external galvanic connection between OUT3/4 and U_{T} is not permissible with analog outputs.

GALVANIC ISOLATION

afety isolation
Function isolation

Mains supply	Process value input INP1 Supplementary input INP2 Optional input INP3 Digital input di1, di2
Relay OUT1	RS422/485 interface
Relay OUT2	Digital inputs di2, 3
Relay OUT3	Universal output OUT3
Relay OUT4	Universal output OUT4
	Transmitter supply U

OUTPUTS

RELAY OUTPUTS OUT1...OUT4

Contact type:
Max.contact rating:
Min. contact rating:
Number of electical switching cycles:
potential-free changeover contact
$500 \mathrm{VA}, 250 \mathrm{~V}, 2 \mathrm{~A}$ at $48 \ldots . .62 \mathrm{~Hz}$, resistive Ioad
6V, 1mA DC
for $1=1$ A/2A: $\geq 800,000 / 500,000$
(at $\sim 250 \mathrm{~V}$ (resistive load)

Note:

If the relays operate external contactors, these must be fitted with RC snubber circuits to manufacturer specifications to prevent excessive switch-off voltage peaks.

OUT3, 4 AS UNIVERSAL OUTPUT

Galvanically isolated from the inputs.
Freely scalable resolution:
11 bits

Current output

0/4... 20 mA configurable.

Signal range:	$0 \ldots$ approx. 22 mA
Max. load:	$\leq 500 \Omega$
Load effect:	no effect
Resolution:	$\leq 22 \mu \mathrm{~A}(0.1 \%)$
Accuracy	$\leq 40 \mu \mathrm{~A}(0.2 \%)$

Voltage output

0/2...10V configurable

Signal range:
Min. Ioad:
Load effect:
Resolution: Accuracy
$0 . . .11 \mathrm{~V}$
$\geq 2 \mathrm{k} \Omega$
no effect
$\leq 11 \mathrm{mV}$ (0.1%)
$\leq 20 \mathrm{mV}$ (0.2\%)

OUT3, 4 used as transmitter supply
Output power: $\quad 22 \mathrm{~mA} / \geq 13 \mathrm{~V}$

OUT3, 4 used as logic output

Load $\leq 500 \Omega$
$0 / \leq 20 \mathrm{~mA}$
Load $>500 \Omega$
$0 />13 \mathrm{~V}$

OUTPUTS OUT5/6 (OPTION)

Galvanically isolated opto-coupler outputs. Grounded load: common positive voltage.
Output rating: 18... 32 VDC ; $\leq 70 \mathrm{~mA}$ Internal voltage drop: $\leq 1 \mathrm{~V}$ with $I_{\max }$ Protective circuit: built-in against short circuit, overload, reversed polarity (free-wheel diode for relay loads).

POWER SUPPLY

Dependent of order:

AC SUPPLY

Voltage:	$90 \ldots . .260 \mathrm{VAC}$
Frequency:	$48 \ldots 62 \mathrm{~Hz}$
Power consumption	approx. 8.0 VA

UNIVERSAL SUPPLY 24 V UC

AC voltage:
Frequency:
DC voltage:
Power consumption:
20.4...26.4 V AC
48... 62 Hz
18... 31 V DC
approx.. 8.0 VA

BEHAVIOUR WITH POWER FAILURE

Configuration, parameters and adjusted set-points, control mode:
Non-volatile storage in EEPROM

BLUEPORT FRONT INTERFACE

Connection of PC via PC adapter (see "Accessory equipment"). The BlueControl software is used to configure, set parameters and operate the device.

BUS INTERFACE (OPTION)

Galvanically isolated
Physical:
Protocol:
RS 422/485
Transmission speed: 2400, 4800, 9600, 19.200 bits/sec
Address range: $1 . . .247$

Number of controllers per bus:
32
Repeaters must be used to connect a higher number of controllers.

ENVIRONMENTAL CONDITIONS

Protection modes

Front panel:	IP 65 (NEMA 4X)
Housing:	IP 20
Terminals:	IP 00

Permissible temperatures

For specified accuracy:	$0 \ldots . \ldots 0^{\circ} \mathrm{C}$
Warm-up time:	≥ 15 minutes
For operation:	$-20 \ldots 65^{\circ} \mathrm{C}$
For storage:	$-40 \ldots 0^{\circ} \mathrm{C}$

Humidity

75% yearly average, no condensation

Shock and vibration

Vibration test Fc (DIN 68-2-6)

Frequency:
Unit in operation:
Unit not in operation:
$10 . .150 \mathrm{~Hz}$
1 g or 0.075 mm
2 g or 0.15 mm

Shock test Ea (DIN IEC 68-2-27)

Shock:	15 g
Duration:	11 mg

Electromagnetic compatibility
Complies with EN 61 326-1
(for continuous, non-attended operation)

GENERAL

Housing

Material: Makrolon 9415 flame-retardant
Flammability class: UL 94 VO, self-extinguishing
Plug-in module, inserted from the front

Safety test

Complies with EN 61010-1 (VDE 0411-1):
Overvoltage category II
Contamination class 2
Working voltage range 300 V
Protection class II

Certifications

Type-tested to DIN 3440
For use in:

- Heat generating plants with outflow temperatures up to $120^{\circ} \mathrm{C}$ to DIN 4751
- Hot water plants with outflow temperatures above $110^{\circ} \mathrm{C}$ to DIN 4752
- Thermal transfer plants with organic transfer media to DIN 4754
- Oil-heated plants to DIN 4755

cUL certification

(Type 4x, indoor use)
For compliance with cUL certificate, the following information must be taken into account:

- Use only $60 / 75$ or $75^{\circ} \mathrm{C}$ copper (Cu) wire.
- Tighten the terminal- screws with a torque of $0.5-0.6 \mathrm{Nm}$
Ambient temperature: $\leq 40^{\circ} \mathrm{C}$
Power supply: ≤ 250 V AC

Electrical connections

- flat-pin terminals $1 \times 6.3 \mathrm{~mm}$ or $2 \times 2.8 \mathrm{~mm}$ to DIN 46244 or
- screw terminals for 0.5 to $2.5 \mathrm{~mm}^{2}$

On instruments with screw terminals, the insulation must be stripped by min .12 mm . Choose end crimps accordingly.

Mounting

Panel mounting with two fixing clamps at top/ bottom or right/left, high-density mounting possible

Mounting position:

Weight:
uncritical
0.27 kg

Accessories delivered with the unit

Operating manual
Fixing clamps

Table 1 Thermocouples measuring ranges

Thermoelementtype		Measuring range		Accuracy	Resolution (\varnothing)
L	$\mathrm{Fe}-\mathrm{CuNi}$ (DIN)	$-100 . . .900^{\circ} \mathrm{C}$	$-148 \ldots 1652^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0.1 K
J	$\mathrm{Fe}-\mathrm{CuNi}$	$-100 \ldots 1200^{\circ} \mathrm{C}$	$-148 \ldots .2192^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0.1 K
K	$\mathrm{NiCr}-\mathrm{Ni}$	$-100 \ldots 1350{ }^{\circ} \mathrm{C}$	$-148 \ldots .2462^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0.2 K
N	Nicrosil/Nisil	$-100 \ldots 1300^{\circ} \mathrm{C}$	-148... $2372^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0.2 K
S	PtRh-Pt 10\%	$0 \ldots .1760^{\circ} \mathrm{C}$	32... $3200^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0.2 K
R	PtRh-Pt 13\%	$0 . .1760^{\circ} \mathrm{C}$	$32 . .3200^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0.2 K
T	$\mathrm{Cu}-\mathrm{CuNi}$	$-200 \ldots . .400^{\circ} \mathrm{C}$	-328... $752^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0.05 K
C	W5\%Re-W26\%Re	$0 . . .2315^{\circ} \mathrm{C}$	$32 . .4199^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0.4 K
D	W3\%Re-W25\%Re	$0 . . .2315^{\circ} \mathrm{C}$	$32 . .4199^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0.4 K
E	$\mathrm{NiCr}-\mathrm{CuNi}$	$-100 \ldots 1000^{\circ} \mathrm{C}$	$-148 \ldots 1832^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0.1 K
B *	PtRh-Pt6\%	0(100)... $1820^{\circ} \mathrm{C}$	32(212)...3308${ }^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0.3 K

* Specifications valid for $400^{\circ} \mathrm{C}$

Table 2 Resistance transducer measuring ranges

Type	Signal Current	Measuring range		Accuracy	Resolution (\varnothing)
Pt100	$0,2 \mathrm{~mA}$	$-200 \ldots .100^{\circ} \mathrm{C}\left(150^{* *}\right)$	$-140 . . .212^{\circ} \mathrm{F}$	$\leq 1 \mathrm{~K}$	0.1 K
Pt100		$-200 \ldots 850^{\circ} \mathrm{C}$	$-140 \ldots 1,562^{\circ} \mathrm{F}$	$\leq 1 \mathrm{~K}$	0.1 K
Pt1000		$-200 \ldots . .850^{\circ} \mathrm{C}$	$-140 \ldots 1562^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0.1 K
KTY 11-6*		$-50 \ldots . .150^{\circ} \mathrm{C}$	-58...302 ${ }^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0.05 K
Spezial		0...4,500		$\leq 0.1 \%$	0.01 \%
Spezial		0... 450			
Poti		0... 160			
Poti		0... 450			
Poti		0...1,600			
Poti		0...4,500			

* Or special
**Measuring range $150^{\circ} \mathrm{C}$ with reduced lead resistance. Max. 160Ω for meas. and lead resistances ($150^{\circ} \mathrm{C} \wedge 157,33 \Omega$).

Table 3 Current and voltage measuring ranges

Measuring range	Input impedance	Accuracy	Resolution (\varnothing)
$0-10$ Volt	$\approx 110 \mathrm{k} \Omega$	$\leq 0.1 \%$	0.6 mV
$-2,5-115 \mathrm{mV}$	$\geq 1 \mathrm{M} \Omega$	$\leq 0.1 \%$	$6 \mu \mathrm{~V}$
$-25-1,150 \mathrm{mV}$	$\geq 1 \mathrm{M} \Omega$	$\leq 0.1 \%$	$60 \mu \mathrm{~V}$

11 Safety hints

This unit was

- built and tested in compliance with VDE 0411-1 / EN 61010-1 and
- delivered in safe condition.
- complies European guideline 89/336/EWG (EMC) and is provided with CE marking.
- tested before delivery and passed the tests required by test schedule.
- To maintain this condition and to ensure safe operation, the user must follow the hints and warnings given in this operating manual.
- The unit is intended exclusively for use as a measurement and control instrument in technical installations.

Warning

If the unit is damaged to an extent that safe operation seems impossible, the unit must not be taken into operation.

ELECTRICAL CONNECTIONS

- The electrical wiring must conform to local standards (e.g. VDE 0100).
- The input measurement and control leads must be kept separate from signal and power supply leads.
- In the installation of the controller a switch or a circuit-breaker must be used and signified.
- The switch or circuit-breaker must be installed near by the controller and the user must have easy access to the controller.

COMMISSIONING

Before instrument switch-on, check that the following information is taken into account:

- Ensure that the supply voltage corresponds to the specifications on the type label.
- All covers required for contact protection must be fitted.
- If the controller is connected with other units in the same signal loop, check that the equipment in the output circuit is not affected before switch-on. If necessary, suitable protective measures must be taken.
- The unit may be operated only in installed condition.
- Before and during operation, the temperature restrictions specified for controller operation must be met.

SHUT-DOWN

For taking the unit out of operation, disconnect it from all voltage sources and protect it against accidental operation.
If the controller is connected with other equipment in the same signal loop, check that other equipment in the output circuit is not affected before switch-off. If necessary, suitable protective measures must be taken.

MAINTENANCE, REPAIR AND MODIFICATION

The units do not need particular maintenance.
Warning
When opening the units, or when removing covers or components, live parts and terminals may be exposed.

Before starting this work, the unit must be disconnected completely.

After completing this work, re-shut the unit and re-fit all covers and components. Check if specifications on the type label must be changed and correct them, if necessary.

A

Caution

When opening the units, components which are sensitive to electrostatic discharge (ESD) can be exposed. The following work may be done only at workstations with suitable ESD protection.

Modification, maintenance and repair work may be done only by trained and authorized personnel. For this purpose, the PMA service should be contacted.
4
The cleaning of the front of the controller should be done with a dry or a wetted (spirit, water) handkerchief.

11.1 Resetting to factory setting,

or to a customer-specific data set
In case of faultyconfiguration, the device can be reset to a default condition.
Unless changed, this basic setting is the manufacturer-specific controller default setting.

However, this setting may have been changed by means of the BlueControl ${ }^{\circledR}$ software. This is recommendable e.g. when completing commissioning in order to cancel accidental alteration easily.
Resetting can be activated as follows:

1.

2.

- Press keys \triangle and $\boldsymbol{\nabla}$ simultaneously FRELary is displayed after power on, after approx. 2 seconds, the display changes to FREno.
- Keys \triangle and $\boldsymbol{\nabla}$ can be used for switch-over between no and UE5 in the second line.
- When pressing the Enter key with " 1 a ", the unit starts without copying the default data.
- When pressing the Enter key with "UE5", there are four possibilities:

	Safety switches	Levels	Password	Instrument reaction after confirming "UES" by pressing
(1)	closed	any	any	always factory reset
(2)	open	free	none	Factory reset without prompt for the password
(3)	open	free	defined	Factory reset after entry of the correct pass number
(4)	open	min. 1 disabled	any	Factory reset is omitted

Timeout
Unless a key is pressed during 10 seconds, a timeout occurs and the instruments starts without copying the default data.
(i)

The process[日Py can take several seconds.
Subsequently, the instrument changes to normal operation.
Index Current signal measuring range 74
!
2-point correction 61
A
Alarm handling 26-27
B
Bargraph 11
BlueControl 71
Bus interface

- Technical Data 76
C
Calibration level (5RL) 61-63
Certifications 76
Configuration examples
- 2-point controller 49
- 3-point controller 50
- 3-point stepping controller 51
- Continuous controller 52
- D - Y -Off controller 53
- Measured value output 55
- Signaller 48
Configuration level
- Configuration parameters 30-43
- Parameter survey 29
Connecting diagram 6
Connecting examples- di2/3, 2-wire transmitter supply8
- INP2 current transformer 7
- OUT1/2 heating/cooling 7
- OUT3 as logic output 10
- OUT3 transmitter supply 9
- RS485 interface. 9
Control inputs di1, di2, di3
- Technical data 74
Cooling functions
- Constant period 47
- Standard 45
- Water cooling non-linear 46
D
DAC 64-65
Digital inputs di1, di2, di3
- Configuration 38
- Technical data 74
E
Environmental conditions 76
Equipment 73
Error list 13
F
Front view 11
I
Input INP1
- Configuration 31
- Parameters 58
- Technical data 74
Input INP2
- Configuration 33
- Parameters 58
- Technical data 74
Input INP3
- Configuration 33
- Parameters 59
- Technical data 74
Input scaling 60
L
LED
- Ada - LED 11
- Err-LED 11
- func-LED 11
- ノ - LED 11
- LED colours 11
- 2 - LED 11
- para-LED 11
- SP. 2 -LED 11
- SP.x-LED 11
Linearization 68
M
Mainenance manager 13-15
Manual tuning 24
Modbus master 70
Mounting 5
0
O2-measurement 66
Offset correction 61
Optimization at the setpoint 18
Output OUT1
- Configuration 36
- Technical data 75
Output OUT2- Technical data75
Output OUT3
- Configuration 37
- Technical data 75
Output OUT4
- Technical data 75
Output OUT5
- Configuration 38
- Technical data 75
Output OUT6
- Configuration 38
- Technical data 75
Oxygen measurement 66
P
Parameter setting level
- Parameter survey 56
- Parameters 57-59
Power supply 75
R
Ramp 44
Resetting to factory setting 80-81
Resistance thermometer measuring range 74

Subject to alterations without notice
© PMA Prozeß- und Maschinen-Automation GmbH P.O.B. 310 229, D-34058 Kassel, Germany Änderungen vorbehalten
Sous réserve de toutes modifications

